题目内容
已知数列{an}满足a1=1,且5an+1-2anan+1+3an=8(m∈N*).
(Ⅰ)求a2,a3,a4的值;
(Ⅱ)猜想{an}的通项公式,并用数学归纳法证明你的猜想.
(Ⅰ)求a2,a3,a4的值;
(Ⅱ)猜想{an}的通项公式,并用数学归纳法证明你的猜想.
(Ⅰ)∵a1=1,5an+1-2anan+1+3an=8,
∴5a2-2a1a2+3a1=8,
∴3a2=5,
∴a2=
.
同理可得,a3=
,a4=
;
(Ⅱ)由(Ⅰ)可猜想,an=
,(n∈N*)
(Ⅱ)证明:当n=1时,a1=1,等式成立;
假设n=k时,ak=
,
则n=k+1时,由5ak+1-2akak+1+3ak=8得:
ak+1=
=
=
=
=
,
即n=k+1时,等式也成立;
综上所述,对任意n∈N*,an=
.
∴5a2-2a1a2+3a1=8,
∴3a2=5,
∴a2=
| 5 |
| 3 |
同理可得,a3=
| 9 |
| 5 |
| 13 |
| 7 |
(Ⅱ)由(Ⅰ)可猜想,an=
| 4n-3 |
| 2n-1 |
(Ⅱ)证明:当n=1时,a1=1,等式成立;
假设n=k时,ak=
| 4k-3 |
| 2k-1 |
则n=k+1时,由5ak+1-2akak+1+3ak=8得:
ak+1=
| 8-3ak |
| 5-2ak |
8-3×
| ||
5-2×
|
| 8(2k-1)-12k+9 |
| 5(2k-1)-8k+6 |
| 4k+1 |
| 2k+1 |
| 4(k+1)-3 |
| 2(k+1)-1 |
即n=k+1时,等式也成立;
综上所述,对任意n∈N*,an=
| 4n-3 |
| 2n-1 |
练习册系列答案
相关题目