题目内容

已知各项均为正数的数列﹛an﹜,对于任意正整数n,点(an,sn)在曲线y=
1
2
(x2+x)

(1)求证:数列﹛an﹜是等差数列;
(2)若数列﹛bn﹜满足bn=
1
anan+2
,求数列﹛bn﹜的前n项和Tn
(1)∵各项均为正数的数列﹛an﹜,对于任意正整数n,点(an,sn)在曲线y=
1
2
(x2+x)
上,
Sn=
1
2
(an2+an)
,①
∴Sn-1=
1
2
an-12+an-1),n≥2,②
①-②,得an=Sn-Sn-1=
1
2
[(an2+an)-(an-12+an-1)]
an-12+an-1=an2-an
an2-an-12=an+an-1
∴an-an-1=1.
∴数列﹛an﹜是等差数列.
(2)∵Sn=
1
2
(an2+an)

a1=
1
2
(a12+a1)
,解得a1=1,a1=0(舍),
∵an-an-1=1.
∴an=1+(n-1)=n,
∴bn=
1
anan+2
=
1
n(n+2)
=
1
2
(
1
n
-
1
n+2
)

∴数列﹛bn﹜的前n项和
Tn=b1+b2+b3+…+bn
=
1
2
(1-
1
3
)+
1
2
(
1
2
-
1
4
)
+
1
2
1
3
-
1
5
)+…+
1
2
(
1
n
-
1
n+2
)

=
1
2
(1+
1
2
-
1
n+1
-
1
n+2

=
3
4
-
1
2n+2
-
1
2n+4
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网