题目内容
(2011•温州二模)设△ABC的内角A,B,C的对应边分别为a,b,c.已知角A是锐角且cos2B-cos2A=2sin(
+B)sin(
-B)
(I )求角A的大小:
(II)试确定满足条件a=2
,b=3的△ABC的个数.
| π |
| 3 |
| π |
| 3 |
(I )求角A的大小:
(II)试确定满足条件a=2
| 2 |
分析:(I)把已知等式的左边第一项利用二倍角的余弦函数公式化简,右边利用两角和与差的正弦函数公式化简,并利用平方差公式变形,整理后再利用同角三角函数的基本关系变形,可求出cos2A的值,由A的范围,得到2A的范围,利用特殊角的三角函数值即可求出A的度数;
(II)由a,b及sinA的值,利用正弦定理求出sinB的值,再由a小于b,利用三角形的边角关系得到A小于B,得到满足sinB值的角B有两个解,则满足条件的三角形ABC的个数为2.
(II)由a,b及sinA的值,利用正弦定理求出sinB的值,再由a小于b,利用三角形的边角关系得到A小于B,得到满足sinB值的角B有两个解,则满足条件的三角形ABC的个数为2.
解答:解:(I)∵cos2B-cos2A=2sin(
+B)sin(
-B),
且cos2B-cos2A=2cos2B-1-cos2A,
2sin(
+B)sin(
-B)=2(
cosB+
sinB)(
cosB-
sinB)
=2(
cos2B-
sin2B)=
cos2B-
sin2B,
∴2cos2B-1-cos2A=
cos2B-
sin2B,
整理得cos2A=
(cos2B+sin2B)-1=-
,
∵A为锐角,∴2A∈(0,π),
∴2A=
,
∴A=
;
(II)∵a=2
,b=3,sinA=
,
∴由正弦定理
=
得:sinB=
=
=
,
∵a<b,∴A<B,
∴角B为锐角或钝角,
则满足条件的△ABC有两个.
| π |
| 3 |
| π |
| 3 |
且cos2B-cos2A=2cos2B-1-cos2A,
2sin(
| π |
| 3 |
| π |
| 3 |
| ||
| 2 |
| 1 |
| 2 |
| ||
| 2 |
| 1 |
| 2 |
=2(
| 3 |
| 4 |
| 1 |
| 4 |
| 3 |
| 2 |
| 1 |
| 2 |
∴2cos2B-1-cos2A=
| 3 |
| 2 |
| 1 |
| 2 |
整理得cos2A=
| 1 |
| 2 |
| 1 |
| 2 |
∵A为锐角,∴2A∈(0,π),
∴2A=
| 2π |
| 3 |
∴A=
| π |
| 3 |
(II)∵a=2
| 2 |
| ||
| 2 |
∴由正弦定理
| a |
| sinA |
| b |
| sinB |
| bsinA |
| a |
3×
| ||||
2
|
3
| ||
| 8 |
∵a<b,∴A<B,
∴角B为锐角或钝角,
则满足条件的△ABC有两个.
点评:此题考查了二倍角的余弦函数公式,两角和与差的正弦函数公式,同角三角函数间的基本关系,正弦定理,以及特殊角的三角函数值,熟练掌握公式及定理是解本题的关键.
练习册系列答案
相关题目