题目内容
已知数列{an}的前n项和Sn满足:S1=1,3Sn=(n+2)an.
(1)求a2,a3的值;
(2)求数列{an}的通项公式;
(3)求
+
+…+
的和.
(1)求a2,a3的值;
(2)求数列{an}的通项公式;
(3)求
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
分析:(1)利用递推式分别令n=2,3即可得出;
(2)当n≥2时,由3Sn=(n+2)an,3Sn-1=(n+1)an-1,两式相减得
=
.再利用“累乘求积”an=
•
•…•
•
•a1即可得出;
(3)利用“裂项求和”即可得出.
(2)当n≥2时,由3Sn=(n+2)an,3Sn-1=(n+1)an-1,两式相减得
| an |
| an-1 |
| n+1 |
| n-1 |
| an |
| an-1 |
| an-1 |
| an-2 |
| a3 |
| a2 |
| a2 |
| a1 |
(3)利用“裂项求和”即可得出.
解答:解:(1)当n=2时,3S2=4a2,∴3(a1+a2)=4a2,化为a2=3a1=3.
当n=3时,得3S3=5a3,∴3(a1+a2+a3)=5a3,代入得3(1+3+a3)=5a3,解得a3=6.
(2)当n≥2时,由3Sn=(n+2)an,3Sn-1=(n+1)an-1,两式相减得3an=(n+2)an-(n+1)an-1,
化为
=
.
∴an=
•
•…•
•
•a1=
•
•
•…•
•
•1=
.
(3)由(2)可得:
=
=2(
-
).
∴
+
+…+
=2[(1-
)+(
-
)+…+(
-
)]
=
.
当n=3时,得3S3=5a3,∴3(a1+a2+a3)=5a3,代入得3(1+3+a3)=5a3,解得a3=6.
(2)当n≥2时,由3Sn=(n+2)an,3Sn-1=(n+1)an-1,两式相减得3an=(n+2)an-(n+1)an-1,
化为
| an |
| an-1 |
| n+1 |
| n-1 |
∴an=
| an |
| an-1 |
| an-1 |
| an-2 |
| a3 |
| a2 |
| a2 |
| a1 |
| n+1 |
| n-1 |
| n |
| n-2 |
| n-1 |
| n-3 |
| 4 |
| 2 |
| 3 |
| 1 |
| n(n+1) |
| 2 |
(3)由(2)可得:
| 1 |
| an |
| 2 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
=
| 2n |
| n+1 |
点评:正确理解递推式的意义,熟练掌握“累乘求积”、“裂项求和”方法等是解题的关键.
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |