题目内容
若函数f(x)=
,则(1)
=
(2)f(3)+f(4)+…+f(2012)+f(
)+f(
)+…+f(
)=
| x2-1 |
| x2+1 |
| f(2) | ||
f(
|
-1
-1
;(2)f(3)+f(4)+…+f(2012)+f(
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2012 |
0
0
.分析:(1)直接把x=,x=
分别代入即可求解
(2))由已知可得f(x)+f(
)=0,结合此规律即可求解
| 1 |
| 2 |
(2))由已知可得f(x)+f(
| 1 |
| x |
解答:解:(1)∵f(x)=
∴f(2)=
=
,f(
)=
=-
∴
=-1
(2))∵f(x)=
∴f(x)+f(
)=
+
=
+
=0
∴f(3)+f(4)+…+f(2012)+f(
)+f(
)+…+f(
)
=[f(3)+f(
)]+f(4)+f(
)]+…+[f(2012)+f(
)]=0
故答案为:-1,0
| x2-1 |
| x2+1 |
∴f(2)=
| 4-1 |
| 4+1 |
| 3 |
| 5 |
| 1 |
| 2 |
| ||
|
| 3 |
| 5 |
∴
| f(2) | ||
f(
|
(2))∵f(x)=
| x2-1 |
| x2+1 |
∴f(x)+f(
| 1 |
| x |
| x2-1 |
| x2+1 |
| ||
|
| x2-1 |
| x2+1 |
| 1-x2 |
| 1+x2 |
∴f(3)+f(4)+…+f(2012)+f(
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2012 |
=[f(3)+f(
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2012 |
故答案为:-1,0
点评:本题主要考查了函数值的求解,解题的关键是发现f(x)+f(
)=0的规律,属于基础试题
| 1 |
| x |
练习册系列答案
相关题目