题目内容
已知数列{an}的前n项和Sn满足Sn=
(1-an)(n∈N*).
(Ⅰ)求数列{an}的通项公式,并比较sn与
的大小;
(Ⅱ)设函数f(x)=log
x,令bn=f(a1)+f(a2)+…+f(an),求数列{
}的前n项和Tn.
| 1 |
| 2 |
(Ⅰ)求数列{an}的通项公式,并比较sn与
| 1 |
| 2 |
(Ⅱ)设函数f(x)=log
| 1 |
| 3 |
| 1 |
| bn |
(Ⅰ)当n≥2时,an=
(1-an)-
(1-an-1)=-
an+
an-1,
2an=-an+an-1,.∴
=
,由S1=a1=
(1-a1)得a1=
∴数列{an}是首项a1=
公比为
的等比数列
an=
×(
)n-1=(
)n.
由Sn=
(1-an)=
(1-(
)n)
∵1-(
)n<1
∴
(1-(
)n)<
∴sn<
(Ⅱ)f(x)=log
x,
∴bn=f(a1)+f(a2)+…+f(an)=log
(a1a2…an)
=log
(
)1+2+…n=
.
∴
=
=2(
-
)
∴Tn=2[(1-
)+(
-
)+…+(
-
)]=
.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
2an=-an+an-1,.∴
| an |
| an-1 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
∴数列{an}是首项a1=
| 1 |
| 3 |
| 1 |
| 3 |
an=
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
由Sn=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
∵1-(
| 1 |
| 3 |
∴
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
∴sn<
| 1 |
| 2 |
(Ⅱ)f(x)=log
| 1 |
| 3 |
∴bn=f(a1)+f(a2)+…+f(an)=log
| 1 |
| 3 |
=log
| 1 |
| 3 |
| 1 |
| 3 |
| n(n+1) |
| 2 |
∴
| 1 |
| bn |
| 2 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴Tn=2[(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 2n |
| n+1 |
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |