题目内容
已知数列{an}:1,1+
,1+
+
,1+
+
+
,…,1+
+
+…+
,….
(I)求数列{an}的通项公式an,并证明数列{an}是等差数列;
(II)设bn=
,求数列{bn}的前n项和Tn.
| 1 |
| 2 |
| 1 |
| 3 |
| 2 |
| 3 |
| 1 |
| 4 |
| 2 |
| 4 |
| 3 |
| 4 |
| 1 |
| n |
| 2 |
| n |
| n-1 |
| n |
(I)求数列{an}的通项公式an,并证明数列{an}是等差数列;
(II)设bn=
| n |
| (an+1-an)n |
(I)∵an=1+
+
+…+
=1+
=
,
∴an+1-an=
-
=
,又a1=1,
∴数列{an}是以1为首项,
为公差的等差数列;
(II)∵bn=
=
=n•2n,
∴Tn=b1+b2+…+bn=1×21+2×22+…+n•2n,①
∴2Tn=1×22+2×23+…+(n-1)×2n+n•2n+1,②
①-②得:-Tn=21+22+…+2n-n•2n+1
=
-n•2n+1
=(1-n)•2n+1-2,
∴Tn=(n-1)•2n+1+2.
| 1 |
| n |
| 2 |
| n |
| n-1 |
| n |
(
| ||||
| 2 |
| n+1 |
| 2 |
∴an+1-an=
| (n+1)+1 |
| 2 |
| n+1 |
| 2 |
| 1 |
| 2 |
∴数列{an}是以1为首项,
| 1 |
| 2 |
(II)∵bn=
| n |
| (an+1-an)n |
| n | ||
(
|
∴Tn=b1+b2+…+bn=1×21+2×22+…+n•2n,①
∴2Tn=1×22+2×23+…+(n-1)×2n+n•2n+1,②
①-②得:-Tn=21+22+…+2n-n•2n+1
=
| 2(1-2n) |
| 1-2 |
=(1-n)•2n+1-2,
∴Tn=(n-1)•2n+1+2.
练习册系列答案
相关题目