题目内容
已知数列{an}的前n项和Sn=(n2+n)•3n.(Ⅰ)求
| lim |
| n→∞ |
| an |
| Sn |
| a1 |
| 12 |
| a2 |
| 22 |
| an |
| n2 |
分析:(1)由题意知
=
=
(1-
)=1-
,由此可知答案.
(2)由题意知,
+
+…+
=
+
+…+
=(
-
) S1 +(
-
) S2 +…+(
-
)Sn-1+
Sn>
Sn,由此可知,当n≥1时,
+
+…+
>3n.
| lim |
| n→∞ |
| an |
| Sn |
| lim |
| n→∞ |
| Sn-Sn-1 |
| Sn |
| lim |
| n→∞ |
| Sn-1 |
| Sn |
| lim |
| n→∞ |
| Sn-1 |
| Sn |
(2)由题意知,
| a1 |
| 12 |
| a2 |
| 22 |
| an |
| n2 |
| S1 |
| 12 |
| S2-S1 |
| 22 |
| Sn-Sn-1 |
| n2 |
=(
| 1 |
| 12 |
| 1 |
| 22 |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| (n-1)2 |
| 1 |
| n2 |
| 1 |
| n2 |
| 1 |
| n2 |
| a1 |
| 12 |
| a2 |
| 22 |
| an |
| n2 |
解答:解:(1)
=
=
(1-
)=1-
=
•
=
,所以
=
(6分)
(2)当n=1时,
=S1=6>3;
当n>1时,
+
+…+
=
+
+…+
=(
-
) S1 +(
-
) S2 +…+(
-
)Sn-1+
Sn>
Sn=
•3n>3n
所以,n≥1时,
+
+…+
>3n.(12分)
| lim |
| n→∞ |
| an |
| Sn |
| lim |
| n→∞ |
| Sn-Sn-1 |
| Sn |
| lim |
| n→∞ |
| Sn-1 |
| Sn |
| lim |
| n→∞ |
| Sn-1 |
| Sn |
| lim |
| n→∞ |
| Sn-1 |
| Sn |
| lim |
| n→∞ |
| n-1 |
| n+1 |
| 1 |
| 3 |
| 1 |
| 3 |
| lim |
| n→∞ |
| an |
| Sn |
| 2 |
| 3 |
(2)当n=1时,
| a1 |
| 12 |
当n>1时,
| a1 |
| 12 |
| a2 |
| 22 |
| an |
| n2 |
| S1 |
| 12 |
| S2-S1 |
| 22 |
| Sn-Sn-1 |
| n2 |
=(
| 1 |
| 12 |
| 1 |
| 22 |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| (n-1)2 |
| 1 |
| n2 |
| 1 |
| n2 |
| 1 |
| n2 |
| n2+n |
| n2 |
所以,n≥1时,
| a1 |
| 12 |
| a2 |
| 22 |
| an |
| n2 |
点评:本题考查数列的极限问题,解题时要注意公式的灵活运用.
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |