题目内容
已知数列{an}的前n项和Sn=
(8n-1).
(I)求数列{an}的通项公式an;
(II)设bn=log2an,求
+
+…+
.
| 2 |
| 7 |
(I)求数列{an}的通项公式an;
(II)设bn=log2an,求
| 1 |
| b1b2 |
| 1 |
| b2b3 |
| 1 |
| bnbn+1 |
分析:(Ⅰ)由数列{an}的前n项和Sn=
(8n-1).利用公式an=
,能求出数列{an}的通项公式an.
(Ⅱ)由an=23n-2(n∈N*),知bn=log223n-2=3n-2,由此能求出
+
+…+
.
| 2 |
| 7 |
|
(Ⅱ)由an=23n-2(n∈N*),知bn=log223n-2=3n-2,由此能求出
| 1 |
| b1b2 |
| 1 |
| b2b3 |
| 1 |
| bnbn+1 |
解答:解:(Ⅰ)a1=S1=
(81-1)=2.…(1分)
当n≥2时,an=Sn-Sn-1
=
(8n-1)-
(8n-1-1)=23n-2.
当n=1时上式也成立,
所以an=23n-2(n∈N*).…(6分)
(Ⅱ)由(Ⅰ)知,
bn=log223n-2=3n-2,…(7分)
所以
+
+…+
=
+
+…+
=
[(1-
)+(
-
)+…+(
-
)]
=
(1-
)
=
.…(12分)
| 2 |
| 7 |
当n≥2时,an=Sn-Sn-1
=
| 2 |
| 7 |
| 2 |
| 7 |
当n=1时上式也成立,
所以an=23n-2(n∈N*).…(6分)
(Ⅱ)由(Ⅰ)知,
bn=log223n-2=3n-2,…(7分)
所以
| 1 |
| b1b2 |
| 1 |
| b2b3 |
| 1 |
| bnbn+1 |
=
| 1 |
| 1×4 |
| 1 |
| 4×7 |
| 1 |
| (3n-2)(3n+1) |
=
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 7 |
| 1 |
| 3n-2 |
| 1 |
| 3n+1 |
=
| 1 |
| 3 |
| 1 |
| 3n+1 |
=
| n |
| 3n+1 |
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法.解题时要认真审题,仔细解答,注意裂项求和法的合理运用.
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |