题目内容

精英家教网如图,已知椭圆
x2
a2
+
y2
b2
=1(a>b>0),F1、F2分别为椭
圆的左、右焦点,A为椭圆的上顶点,直线AF2交椭圆于另一
点B、
(1)若∠F1AB=90°,求椭圆的离心率;
(2)若
AF2
=2
F2B
AF1
AB
=
3
2
,求椭圆的方程.
分析:(1)根据∠F1AB=90°推断出△AOF2为等腰直角三角形,进而可知OA=OF2,求得b和c的关系,进而可求得a和c的关系,即椭圆的离心率.
(2)根据题意可推断出A,和两个焦点的坐标,设出B的坐标,利用已知条件中向量的关系,求得x和y关于c的表达式,代入椭圆方程求得a和c的关系,利用
AF1
AB
=
3
2
求得a和c的关系,最后联立求得a和b,则椭圆方程可得.
解答:解:(1)若∠F1AB=90°,则△AOF2为等腰直角三角形,所以有OA=OF2,即b=C、
所以a=
2
c,e=
c
a
=
2
2

(2)由题知A(0,b),F1(-c,0),F2(c,0),
其中,c=
a2-b2
,设B(x,y).
AF2
=2
F2B
?(c,-b)=2(x-c,y),解得x=
3c
2

y=-
b
2
,即B(
3c
2
,-
b
2
).
将B点坐标代入
x2
a2
+
y2
b2
=1,得
9
4
c2
a2
+
b2
4
b2
=1,
9c2
4a2
+
1
4
=1,
解得a2=3c2.①
又由
AF1
AB
=(-c,-b)•(
3c
2
,-
3b
2
)=
3
2

⇒b2-c2=1,
即有a2-2c2=1.②
由①,②解得c2=1,a2=3,从而有b2=2.
所以椭圆方程为
x2
3
+
y2
2
=1.
点评:本题主要考查了椭圆的应用和椭圆的简单性质,向量的基本性质.注意挖掘题意中隐含的条件,充分利用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网