题目内容

(2008•宝坻区一模)某单位建造一间地面面积为12m2的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度x不得超过a米,房屋正面的造价为400元/m2,房屋侧面的造价为150元/m2,屋顶和地面的造价费用合计为5800元,如果墙高为3m,且不计房屋背面的费用.
(1)把房屋总价y表示成x的函数,并写出该函数的定义域.
(2)当侧面的长度为多少时,总造价最底?最低总造价是多少?
分析:(1)分别算出房子的两个侧面积乘以150再加上房子的正面面积乘以400再加上屋顶和地面的造价即为总造价;
(2)我们可以先求房屋总造价的函数解析式,利用基本不等式或导数即可求出函数的最小值,进而得到答案.
解答:解:(1)由题意可得,y=3(2x×150+
12
x
×400)+5800
=900(x+
16
x
)+5800(0<x≤a)
…(5分)
(2)y=900(x+
16
x
)+5800≥900×2
16
x
+5800=13000

当且仅当x=
16
x
即x=4
时取等号…(7分)
若a≥4,x=4时,有最小值13000.…(8分)
若a<4,任取x1,x2∈(0,a]且x1<x2y1-y2=900(x1+
16
x1
)+5800-900(x2+
16
x2
)-5800
=900[(x1-x2)+16(
1
x1
-
1
x2
)]
=
900(x1-x2)(x1x2-16)
x1x2

∵x1<x2≤a,∴x1-x2<0,x1x 2a2<16
∴y1-y2>0
y=900(x+
16
x
)+5800在(0,a]
上是减函数…(10分)
∴当x=a时y有最小值900(a+
16
a
)+5800
…(12分)
(此题利用导数相应得分)
点评:本题考查函数模型的构建,考查基本不等式的运用,考查分类讨论的数学思想,正确构建函数是关键,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网