题目内容

已知平面向量
a
b
c
满足|
a
|=1,|
b
|=2,|
c
|=4
,且向量
a
b
c
两两所成的角相等,则|
a
+
b
+
c
|
=(  )
A.
7
B.7或
5
C.7D.7或
7
由向量
a
b
c
两两所成的角相等,设向量所成的角为α,由题意可知α=0°或α=120°
(|
a
+
b
+
c
|) 
2
=|
a
|
2
+|
b
|
2
+|
c
|
2
+2(
a
b
+
a
c
+
b
c
)=21+2(|
a
|•|
b
|cosα+|
a
|•|
c
|cosα+|
b
|•|
c
|cosα)=21+28cosα
所以当α=0°时,原式=49;
当α=120°时,原式=7
所以所求的模为7或
7

故选D
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网