题目内容

在△ABC中,角A,B,C所对的边长分别是a,b,c.
(1)若sinC+sin(B-A)=sin2A,试判断△ABC的形状;
(2)若△ABC的面积S=3
3
,且c=
13
,C=
π
3
,求a,b的值.
(1)∵sinC+sin(B-A)=sin2A,且sinC=sin(A+B),
∴sin(B+A)+sin(B-A)=sin2A,即2sinBcosA=2sinAcosA,
∴cosA(sinB-sinA)=0,
∴cosA=0或sinB=sinA,
∵A与B都为三角形的内角,
∴A=
π
2
或A=B,
则△ABC为直角三角形或等腰三角形;
(2)∵△ABC的面积为3
3
,c=
13
,C=
π
3

1
2
absinC=
3
4
ab=3
3
,即ab=12①,
由余弦定理c2=a2+b2-2abcosC得:13=a2+b2-ab,即a2+b2=25②,
联立①②解得:a=4,b=3或a=3,b=4.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网