搜索
题目内容
到定点(0,p)(其中p>0)的距离等于到定直线y=-p的距离的轨迹方程为
A.
y
2
=2px
B.
x
2
=2py
C.
y
2
=4px
D.
x
2
=4py
试题答案
相关练习册答案
D
练习册系列答案
学业水平测试模块强化训练系列答案
广东中考高分突破系列答案
天利38套中考试题精选系列答案
归纳与测评系列答案
贵州中考系列答案
滚动迁移中考总复习系列答案
海东青中考ABC卷系列答案
好学生课时检测系列答案
好学生口算计算应用一卡通系列答案
毕业生升学文化课考试说明系列答案
相关题目
已知动点M到定点F(1,0)的距离比M到定直线x=-2的距离小1.
(1)求证:M点的轨迹是抛物线,并求出其方程;
(2)大家知道,过圆上任意一点P,任意作互相垂直的弦PA、PB,则弦AB必过圆心(定点).受此启发,研究下面问题:
1过(1)中的抛物线的顶点O任意作互相垂直的弦OA、OB,问:弦AB是否经过一个定点?若经过,请求出定点坐标,否则说明理由;2研究:对于抛物线上某一定点P(非顶点),过P任意作互相垂直的弦PA、PB,弦AB是否经过定点?
根据下列条件,求抛物线的标准方程
(1)顶点在原点,对称轴是y轴,并经过点P(-6,-3).
(2)抛物线y
2
=2px(p>0)上有一点M,其横坐标为8,它到焦点的距离为9.
(3)抛物线y
2
=2px(p>0)上的点到定点(1,0)的最近距离为
p
2
.
已知动点M到定点F(1,0)的距离比M到定直线x=-2的距离小1.
(1)求证:M点的轨迹是抛物线,并求出其方程;
(2)我们知道:“过圆上任意一点P,任意作互相垂直的弦PA、PB,则弦AB必过圆心”(定点).受此启发,研究下面问题:
对于抛物线y
2
=2px(p>0)上某一定点P(非顶点),过P任意作互相垂直的弦PA、PB,弦AB是否经过定点?
抛物线y
2
=2px(p>0)的准线方程为x=-2,该抛物线上的点到其准线的距离与到定点N的距离都相等,以N为圆心的圆与直线
l
1
:y=x和l
2
:y=-x都相切.
(Ⅰ)求圆N的方程;
(Ⅱ)是否存在直线l同时满足下列两个条件,若存在,求出的方程;若不存在请说明理由.
①l分别与直线l
1
和l
2
交于A、B两点,且AB中点为E(4,1);
②l被圆N截得的弦长为2.
如图所示,已知椭圆M:
y
2
a
2
+
x
2
b
2
=1
(a>b>0)的四个顶点构成边长为5的菱形,原点O到直线AB的距离为
12
5
,其A(0,a),B(-b,0).直线l:x=my+n与椭圆M相交于C,D两点,且以CD为直径的圆过椭圆的右顶点P(其中点C,D与点P不重合).
(1)求椭圆M的方程;
(2)试判断直线l与x轴是否交于定点?若是,求出定点的坐标;若不是,请说明理由.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案