题目内容
等差数列{an}、{bn}的公差都不为零,若
=3,则
=
.
| lim |
| n→∞ |
| an |
| bn |
| lim |
| n→∞ |
| b1+b2+…bn |
| na4n |
| 1 |
| 24 |
| 1 |
| 24 |
分析:由条件求得 d1=3d2,要求的式子即
,此式就等于n2的系数之比,运算求得结果.
| lim |
| n→∞ |
nb1+
| ||
| n[a1 +(4n-1)•3d2] |
解答:解:设{an}、{bn}的公差分别为d1 和d2,
则由
=
=3,∴
=3,d1=3d2.
∴
=
=
═
=
=
.
则由
| lim |
| n→∞ |
| an |
| bn |
| lim |
| n→∞ |
| a1+(n-1)d1 |
| b1+(n-1)d2 |
| d1 |
| d2 |
∴
| lim |
| n→∞ |
| b1+b2+…bn |
| na4n |
| lim |
| n→∞ |
nb1+
| ||
| n[a1 +(4n-1)•3d2] |
| lim |
| n→∞ |
b1+
| ||
| a1+(4n-1)•3d2 |
═
| lim |
| n→∞ |
| ||||
|
| ||
| 12d2 |
| 1 |
| 24 |
点评:本题考查等差数列的通项公式,数列极限的运算法则的应用,属于中档题.
练习册系列答案
相关题目