ÌâÄ¿ÄÚÈÝ
º¯Êýf(x)=| x |
| 1-x |
| 1 |
| 2 |
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÈôÊýÁÐ{
| bn | ||
|
| ¦Ë |
| an |
| b5 | ||
|
| ¦Ë |
| a5 |
£¨3£©ÁÊýg(x)=[f-1(x)+f(x)]-
| 1-x2 |
| 1+x2 |
| 1 |
| 2 |
| (x1-x2)2 |
| x1x2 |
| (x2-x3)2 |
| x2x3 |
| (xn+1-xn)2 |
| xnxn+1 |
| ||
| 8 |
·ÖÎö£º£¨1£©ÏÈÇó³öº¯Êýf£¨x£©µÄ·´º¯Êýf-1(x)=
(x£¾0)£®an+1=f-1(an)=
£¬ÓÉ´ËÄÜÇó³öÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÓÉf-1(x)=
(x£¾0)£¬Öª[f-1(x)]¡ä=
£¬ËùÒÔy=f-1£¨x£©Ôڵ㣨n£¬f-1£¨n£©£©´¦µÄÇÐÏß·½³ÌΪy-
=
(x-n)£¬ÓÉ´ËÈëÊÖÄÜÇó³ö¦ËµÄȡֵ·¶Î§£®
£¨3£©g(x)=[f-1(x)+f(x)]•
=[
+
]•
=
£¬x¡Ê(0£¬1)£®ËùÒÔxn+1-xn=xn(1-xn)•
£¬ÓÖÒò0£¼xn£¼1£¬Ôòxn+1£¾xn£®ÓÉ´ËÈëÊÖÄܹ»Ö¤Ã÷
+
+¡+
£¼
£®
| x |
| 1+x |
| an |
| 1+an |
£¨2£©ÓÉf-1(x)=
| x |
| 1+x |
| 1 |
| (1+x)2 |
| n |
| n+1 |
| 1 |
| (1+n)2 |
£¨3£©g(x)=[f-1(x)+f(x)]•
| 1-x2 |
| 1+x2 |
| x |
| 1+x |
| x |
| 1-x |
| 1-x2 |
| 1+x2 |
| 2x |
| 1+x2 |
| 1+xn | ||
|
| (x1-x2)2 |
| x1x2 |
| (x2-x3)2 |
| x2x3 |
| (xn+1-xn)2 |
| xnxn+1 |
| ||
| 8 |
½â´ð£º½â£º£¨1£©Áîy=
£¬½âµÃx=
£»ÓÉ0£¼x£¼1£¬½âµÃy£¾0£®
¡àº¯Êýf£¨x£©µÄ·´º¯Êýf-1(x)=
(x£¾0)£®
Ôòan+1=f-1(an)=
£¬
-
=1£®
¡à{
}ÊÇÒÔ2ΪÊ×Ï1Ϊ¹«²îµÄµÈ²îÊýÁУ¬¹Êan=
£®£¨4·Ö£©
£¨2£©¡ßf-1(x)=
(x£¾0)£¬¡à[f-1(x)]¡ä=
£¬
¡ày=f-1£¨x£©Ôڵ㣨n£¬f-1£¨n£©£©´¦µÄÇÐÏß·½³ÌΪy-
=
(x-n)£¬
Áîx=0µÃbn=
£®¡à
-
=n2-¦Ë(n+1)=(n-
)2-¦Ë-
£®
¡ß½öµ±n=5ʱȡµÃ×îСֵ£¬¡à4.5£¼
£¼5.5£®
¡à¦ËµÄȡֵ·¶Î§Îª£¨9£¬11£©£¨8·Ö£©
£¨3£©g(x)=[f-1(x)+f(x)]•
=[
+
]•
=
£¬x¡Ê(0£¬1)£®
ËùÒÔxn+1-xn=xn(1-xn)•
£¬
ÓÖÒò0£¼xn£¼1£¬Ôòxn+1£¾xn£¨10·Ö£©
ÏÔÈ»1£¾xn+1£¾xn£¾x2£¾
£®xn+1-xn=xn(1-xn)•
¡Ü
•
£¼
•
=
¡à
=
(xn+1-xn)=(xn+1-xn)(
-
)£¼
(
-
)
¡à
+
++
£¼
[(
-
)+(
-
)++(
-
)]
=
(
-
)=
(2-
)£¨12·Ö£©
¡ß
£¼xn+1£¼1£¬¡à1£¼
£¼2£¬¡à0£¼2-
£¼1
¡à
+
++
=
(2-
)£¼
£¨14·Ö£©
| x |
| 1-x |
| y |
| 1+y |
¡àº¯Êýf£¨x£©µÄ·´º¯Êýf-1(x)=
| x |
| 1+x |
Ôòan+1=f-1(an)=
| an |
| 1+an |
| 1 |
| an+1 |
| 1 |
| an |
¡à{
| 1 |
| an |
| 1 |
| n+1 |
£¨2£©¡ßf-1(x)=
| x |
| 1+x |
| 1 |
| (1+x)2 |
¡ày=f-1£¨x£©Ôڵ㣨n£¬f-1£¨n£©£©´¦µÄÇÐÏß·½³ÌΪy-
| n |
| n+1 |
| 1 |
| (1+n)2 |
Áîx=0µÃbn=
| n2 |
| (1+n)2 |
| bn | ||
|
| ¦Ë |
| an |
| ¦Ë |
| 2 |
| ¦Ë2 |
| 4 |
¡ß½öµ±n=5ʱȡµÃ×îСֵ£¬¡à4.5£¼
| ¦Ë |
| 2 |
¡à¦ËµÄȡֵ·¶Î§Îª£¨9£¬11£©£¨8·Ö£©
£¨3£©g(x)=[f-1(x)+f(x)]•
| 1-x2 |
| 1+x2 |
| x |
| 1+x |
| x |
| 1-x |
| 1-x2 |
| 1+x2 |
| 2x |
| 1+x2 |
ËùÒÔxn+1-xn=xn(1-xn)•
| 1+xn | ||
|
ÓÖÒò0£¼xn£¼1£¬Ôòxn+1£¾xn£¨10·Ö£©
ÏÔÈ»1£¾xn+1£¾xn£¾x2£¾
| 1 |
| 2 |
| 1+xn | ||
|
| 1 |
| 4 |
| 1 | ||
xn+1+
|
| 1 |
| 4 |
| 1 | ||
2
|
| ||
| 8 |
¡à
| (xn+1-xn)2 |
| xnxn+1 |
| xn+1-xn |
| xnxn+1 |
| 1 |
| xn |
| 1 |
| xn+1 |
| ||
| 8 |
| 1 |
| xn |
| 1 |
| xn+1 |
¡à
| (x1-x2)2 |
| x1x2 |
| (x2-x3)2 |
| x2x3 |
| (xn+1-xn)2 |
| xnxn+1 |
| ||
| 8 |
| 1 |
| x1 |
| 1 |
| x2 |
| 1 |
| x2 |
| 1 |
| x3 |
| 1 |
| xn |
| 1 |
| xn+1 |
=
| ||
| 8 |
| 1 |
| x1 |
| 1 |
| xn+1 |
| ||
| 8 |
| 1 |
| xn+1 |
¡ß
| 1 |
| 2 |
| 1 |
| xn+1 |
| 1 |
| xn+1 |
¡à
| (x1-x2)2 |
| x1x2 |
| (x2-x3)2 |
| x2x3 |
| (xn+1-xn)2 |
| xnxn+1 |
| ||
| 8 |
| 1 |
| xn+1 |
| ||
| 8 |
µãÆÀ£º±¾Ì⿼²éÊýÁеÄÐÔÖʺÍÓ¦Ó㬽âÌâʱҪÈÏÕæÉóÌ⣬×Ðϸ½â´ð£¬×¢Ò⹫ʽµÄºÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿