题目内容
已知f(x)=2cos2x+2
sinxcosx+1.
(1)求f(
)的值;
(2)若x∈[-
,0]时,求f(x)的值域;
(3)求y=f(-x)的单调递增区间.
| 3 |
(1)求f(
| π |
| 4 |
(2)若x∈[-
| π |
| 2 |
(3)求y=f(-x)的单调递增区间.
分析:(1)先由二倍角公式把f(x)=2cos2x+2
sinxcosx+1等价转化为f(x)=
sin2x+cos2x+2,再由三角函数和(差)公式进一步转化为f(x)=2sin(2x+
)+2.由此能求出f(
)的值.
(2)若x∈[-
,0],则2x+
∈[-
,
],由此能求出f(x)的值域.
(3)y=f(-x)=2sin(-2x+
)+2,其增区间为:-
+2kπ≤-2x+
≤
+2kπ,k∈Z,由此能求了出结果.
| 3 |
| 3 |
| π |
| 6 |
| π |
| 4 |
(2)若x∈[-
| π |
| 2 |
| π |
| 6 |
| 5π |
| 6 |
| π |
| 6 |
(3)y=f(-x)=2sin(-2x+
| π |
| 6 |
| π |
| 2 |
| π |
| 6 |
| π |
| 2 |
解答:解:(1)∵f(x)=2cos2x+2
sinxcosx+1
=2×
+
sin2x+1
=
sin2x+cos2x+2
=2sin(2x+
)+2.
∴f(
) =2sin(
+
)+2
=2cos
+2
=
+2.
(2)若x∈[-
,0],
则2x+
∈[-
,
],
∴2x+
=-
时,f(x)min=-2+2=0,
2x+
=
时,f(x)max=1+2=3,
∴f(x)的值域是[0,3].
(3)y=f(-x)=2sin(-2x+
)+2,
其增区间为:-
+2kπ≤-2x+
≤
+2kπ,k∈Z,
解得-
-kπ≤x≤
-kπ,k∈Z,
∴y=f(-x)的单调递增区间是[-
-kπ,
-kπ],k∈Z.
| 3 |
=2×
| 1+cos2x |
| 2 |
| 3 |
=
| 3 |
=2sin(2x+
| π |
| 6 |
∴f(
| π |
| 4 |
| π |
| 2 |
| π |
| 6 |
=2cos
| π |
| 6 |
=
| 3 |
(2)若x∈[-
| π |
| 2 |
则2x+
| π |
| 6 |
| 5π |
| 6 |
| π |
| 6 |
∴2x+
| π |
| 6 |
| π |
| 2 |
2x+
| π |
| 6 |
| π |
| 6 |
∴f(x)的值域是[0,3].
(3)y=f(-x)=2sin(-2x+
| π |
| 6 |
其增区间为:-
| π |
| 2 |
| π |
| 6 |
| π |
| 2 |
解得-
| π |
| 6 |
| π |
| 3 |
∴y=f(-x)的单调递增区间是[-
| π |
| 6 |
| π |
| 3 |
点评:本题考查解三角函数恒等变换的应用,考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.综合性强,是高考的重点,易错点是知识体系不牢固.解题时要注意二倍角公式和三角函数和(差)公式的灵活运用.
练习册系列答案
相关题目