题目内容
数列{an}的前n项和为Sn(n∈N*),Sn=(m+1)-man对任意的n∈N*都成立,其中m为常数,且m<-1.
(1)求证:数列{an}是等比数列;
(2)记数列{an}的公比为q,设q=f(m).若数列{bn}满足;b1=a1,bn=f(bn-1)(n≥2,n∈N*).求证:数列{
}是等差数列;
(3)在(2)的条件下,设cn=bn•bn+1,数列{cn}的前n项和为Tn.求证:Tn<1.
(1)求证:数列{an}是等比数列;
(2)记数列{an}的公比为q,设q=f(m).若数列{bn}满足;b1=a1,bn=f(bn-1)(n≥2,n∈N*).求证:数列{
| 1 |
| bn |
(3)在(2)的条件下,设cn=bn•bn+1,数列{cn}的前n项和为Tn.求证:Tn<1.
(1)当n=1时,a1=S1=1,∵Sn=(m+1)-man,①
∴Sn-1=(m+1)-man-1(n≥2),②
①-②得:an=man-1-man(n≥2),
∴(m+1)an=man-1.∵a1≠0,m<-1,
∴an-1≠0,m+1≠0,∴
=
(n≥2).
∴数列an是首项为1,公比为
的等比数列.
(2)f(m)=
,b1=a1=1,bn=f(bn-1)=
,
∴
=
,∴
-
=1(n≥2),
∴数列{
}是首项为1,公差为1的等差数列.
(3)由(2)得
=n,则bn=
.cn=bn•bn+1=
,
Tn=
+
+…+
=
-
+
-
+
-
+…+
-
=1-
<1.
∴Sn-1=(m+1)-man-1(n≥2),②
①-②得:an=man-1-man(n≥2),
∴(m+1)an=man-1.∵a1≠0,m<-1,
∴an-1≠0,m+1≠0,∴
| an |
| an-1 |
| m |
| m+1 |
∴数列an是首项为1,公比为
| m |
| m+1 |
(2)f(m)=
| m |
| m+1 |
| bn-1 |
| bn-1+1 |
∴
| 1 |
| bn |
| b n-1+1 |
| bn-1 |
| 1 |
| bn |
| 1 |
| bn-1 |
∴数列{
| 1 |
| bn |
(3)由(2)得
| 1 |
| bn |
| 1 |
| n |
| 1 |
| n(n+1) |
Tn=
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| n(n+1) |
| 1 |
| 1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
练习册系列答案
相关题目