题目内容

设f(x)=ax2+bx+c(a>b>c),f(1)=0,g(x)=ax+b.
(I)求证:函数f(x)与g(x)的图象有两个交点;
(Ⅱ)设函数f(x)与g(x)的图象的两个交点A、B在x轴上的射影为A1、B1,求|A1B1|的取值范围.
分析:(I)根据f(1)=0,得出a,b,c的关系,再由f(x)=g(x),两边移项,构成一个一元二次方程,用△来进行判断;
( II)已知函数f(x)与g(x)的图象的两个交点A、B,由(1)得出两根,根据韦达定理,进行求解;
解答:解:(I)∵f(1)=0
∴a+b+c=0
∵a>b>c
∴a>0,c<0
由ax2+bx+c=ax+b得ax2+(b-a)x+c-b=0,
△=(b-a)2-4a(c-b)=(-a-c-a)2-4a(c+a+c)=c2-4ac
∵a>0,c<0
∴△>0所以函数f(x)与g(x)的图象有两个交点.
(II)由已知方程ax2+(b-a)x+c-b=0,两根为x1,x2
x1+x2=
a-b
a
=2+
c
a
x1x2=
c-b
a
=1+
2c
a

|x1-x2|=
(x1+x2)2-4x1x2
=
(2+
c
a
)
2
-4(1+2
c
a
)
=
(
c
a
)
2
-4(
c
a
)
=
(
c
a
-2)
2
-4

由a+b+c=0,a>b>c得a>0,c<0,a>-a-c>c,
于是得到,-2<
c
a
<-
1
2

|x1-x2|∈(
3
2
,2
3
)

所以,|A1B1|的取值范围(
3
2
,2
3
)
点评:此题主要考查二次函数的图象及其性质的应用,第一问比较简单,第二问计算比较复杂,考查学生的计算能力,是一道基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网