题目内容
(本小题满分13分)
已知数列
中,
(1)求数列
的通项公式;
(2)设
(3)设
是否存在最大的整数m,使得
对任意
,均有
成立?若存在,求出m,若不存在,请说明理由。
已知数列
(1)求数列
(2)设
(3)设
对任意
解:(1)
……………………5分
(2)
……………………10分
(3)由(1)可得
则

…12分
由Tn为关于n的增函数,故
,于是欲使
恒成立
则
∴存在最大的整数m=7满足题意
(2)
(3)由(1)可得
则
由Tn为关于n的增函数,故
则
略
练习册系列答案
相关题目