题目内容

3.如图四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB∥CD,∠ABC=90°,且CD=2,AB=BC=PA=1,PD=$\sqrt{3}$.
(Ⅰ)求三棱锥A-PCD的体积;
(Ⅱ)问:棱PB上是否存在点E,使得PD∥平面ACE?若存在,求出$\frac{BE}{BP}$的值,并加以证明;若不存在,请说明理由.

分析 (Ⅰ)取CD中点G,连接AG,利用已知可得:四边形AGCB为平行四边形,∠AGD=∠DCB=∠ABC=90°,在Rt△AGD中,AG=BC=1,DG=$\frac{1}{2}$CD=1,利用勾股定理与逆定理可得:PA⊥AD.利用面面垂直的性质定理可得:PA⊥平面ABCD,利用VA-PCD=VP-ACD=$\frac{1}{3}•{S}_{△ACD}•PA$,即可得出.
(II)棱PB上存在点E,当$\frac{BE}{BP}$=$\frac{1}{3}$时,PD∥平面ACE.连接BD交AC于点O,连接OE.利用平行线分线段成比例定理再三角形中的应用:可得OE∥DP.

解答 解:(Ⅰ)取CD中点G,连接AG,
∵CD=2AB,AB∥CD,
∴AB∥GC,AB=GC,
∴四边形AGCB为平行四边形,
∴∠AGD=∠DCB=∠ABC=90°,
在Rt△AGD中,∵AG=BC=1,DG=$\frac{1}{2}$CD=1,
∴AD=$\sqrt{A{G}^{2}+D{G}^{2}}$=$\sqrt{2}$,
∴PD2=3=PA2+AD2
∴∠PAD=90°,即PA⊥AD,
∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,
∴PA⊥平面ABCD,
∵S△ACD=$\frac{1}{2}CD•AG$=1,
∴VA-PCD=VP-ACD=$\frac{1}{3}•{S}_{△ACD}•PA$
=$\frac{1}{3}×1×1$=$\frac{1}{3}$.
( II)棱PB上存在点E,当$\frac{BE}{BP}$=$\frac{1}{3}$时,PD∥平面ACE.
证明:连接BD交AC于点O,连接OE.
∵AB∥CD,CD=2AB,
∴$\frac{BO}{OD}$=$\frac{AB}{CD}$=$\frac{1}{2}$,
∴$\frac{BO}{BD}$=$\frac{1}{3}$,又$\frac{BE}{BP}=\frac{1}{3}$,
∴$\frac{BO}{BD}=\frac{BE}{BP}$,
∴OE∥DP,
又OE?平面ACE,PD?ACE,
∴PD∥ACE.

点评 本题主要考查空间线线、线面的位置关系、体积的计算等基础知识;考查空间想象能力、运算求解能力及推理论证能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网