题目内容

对于函数f(x)定义域中任意的x1,x2(x1≠x2),有如下结论:
①f(x1+x2)=f(x1)•f(x2);
②f(x1•x2)=f(x1)+f(x2);
f(x1)-f(x2)
x1-x2
>0;
f(
x1+x2
2
)<
f(x1)+f(x2)
2

当f(x)=lgx时,上述结论中正确结论的序号是______.
①f(x1+x2)=lg(x1+x2)≠f(x1)f(x2)=lgx1•lgx2
②f(x1•x2)=lgx1x2=lgx1+lgx2=f(x1)+f(x2
③f(x)=lgx在(0,+∞)单调递增,则对任意的0<x1<x2,d都有f(x1)<f(x2
f(x1)-f(x2)
x1-x2
>0

f(
x1+x2
2
)=lg
x1+x2
2
f(x1)+f(x2)
2
=
lgx1+lgx2
2
=
lgx1x2
2

x1+x2
2
x1x2
lg
x1+x2
2
≥lg
x1x2
=
1
2
lgx1x2

故答案为:②③
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网