题目内容
对于函数f(x)定义域中任意的x1,x2(x1≠x2),有如下结论:
①f(x1+x2)=f(x1)•f(x2);
②f(x1•x2)=f(x1)+f(x2);
③
>0;
④f(
)<
.
当f(x)=lgx时,上述结论中正确结论的序号是______.
①f(x1+x2)=f(x1)•f(x2);
②f(x1•x2)=f(x1)+f(x2);
③
| f(x1)-f(x2) |
| x1-x2 |
④f(
| x1+x2 |
| 2 |
| f(x1)+f(x2) |
| 2 |
当f(x)=lgx时,上述结论中正确结论的序号是______.
①f(x1+x2)=lg(x1+x2)≠f(x1)f(x2)=lgx1•lgx2
②f(x1•x2)=lgx1x2=lgx1+lgx2=f(x1)+f(x2)
③f(x)=lgx在(0,+∞)单调递增,则对任意的0<x1<x2,d都有f(x1)<f(x2)
即
>0
④f(
)=lg
,
=
=
∵
≥
∴lg
≥lg
=
lgx1x2
故答案为:②③
②f(x1•x2)=lgx1x2=lgx1+lgx2=f(x1)+f(x2)
③f(x)=lgx在(0,+∞)单调递增,则对任意的0<x1<x2,d都有f(x1)<f(x2)
即
| f(x1)-f(x2) |
| x1-x2 |
④f(
| x1+x2 |
| 2 |
| x1+x2 |
| 2 |
| f(x1)+f(x2) |
| 2 |
| lgx1+lgx2 |
| 2 |
| lgx1x2 |
| 2 |
∵
| x1+x2 |
| 2 |
| x1x2 |
| x1+x2 |
| 2 |
| x1x2 |
| 1 |
| 2 |
故答案为:②③
练习册系列答案
相关题目