题目内容
已知函数f(x)=
sin2x-
(cos2x-sin2x)-1,x∈R,将函数f(x)向左平移
个单位后得函数g(x),设△ABC三个角A、B、C的对边分别为a、b、c.
(Ⅰ)若c=
,f(C)=0,sinB=3sinA,求a、b的值;
(Ⅱ)若g(B)=0且
=(cosA,cosB),
=(1,sinA-cosAtanB),求
•
的取值范围.
| ||
| 2 |
| 1 |
| 2 |
| π |
| 6 |
(Ⅰ)若c=
| 7 |
(Ⅱ)若g(B)=0且
| m |
| n |
| m |
| n |
(Ⅰ)f(x)=
sin2x-
(cos2x-sin2x)-1=
sin2x-
cos2x-1=sin(2x-
)-1.…(1分)
f(C)=sin(2C-
)-1=0,所以sin(2C-
)=1.
因为2C-
∈(-
,
),
所以2C-
=
所以C=
.…(3分)
由余弦定理知:a2+b2-2abcos
=7,因sinB=3sinA,
所以由正弦定理知:b=3a.…(5分)
解得:a=1,b=3…(6分)
(Ⅱ)由题意可得g(x)=sin(2x+
)-1,所以g(B)=sin(2B+
)-1=0,所以sin(2B+
)=1.
因为2B+
∈(
,
),所以2B+
=
,即B=
又
=(cosA,
),
=(1,sinA-
cosA),
于是
•
=cosA+
(sinA-
cosA)=
cosA+
sinA=sin(A+
)…(8分)
∵B=
∴A∈(0,
π),得 A+
∈(
,π)…(10分)
∴sin(A+
)∈(0,1],即
•
∈(0,1].…(12分)
| ||
| 2 |
| 1 |
| 2 |
| ||
| 2 |
| 1 |
| 2 |
| π |
| 6 |
f(C)=sin(2C-
| π |
| 6 |
| π |
| 6 |
因为2C-
| π |
| 6 |
| π |
| 6 |
| 11π |
| 6 |
所以2C-
| π |
| 6 |
| π |
| 2 |
所以C=
| π |
| 3 |
由余弦定理知:a2+b2-2abcos
| π |
| 3 |
所以由正弦定理知:b=3a.…(5分)
解得:a=1,b=3…(6分)
(Ⅱ)由题意可得g(x)=sin(2x+
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
因为2B+
| π |
| 6 |
| π |
| 6 |
| 13π |
| 6 |
| π |
| 6 |
| π |
| 2 |
| π |
| 6 |
又
| m |
| ||
| 2 |
| n |
| ||
| 3 |
于是
| m |
| n |
| ||
| 2 |
| ||
| 3 |
| 1 |
| 2 |
| ||
| 2 |
| π |
| 6 |
∵B=
| π |
| 6 |
| 5 |
| 6 |
| π |
| 6 |
| π |
| 6 |
∴sin(A+
| π |
| 6 |
| m |
| n |
练习册系列答案
相关题目