题目内容

3.若实数x,y满足3x+1≥ex+y-3+e2x-y+2则x+y=3.

分析 根据[(x+y-3)+1]≤ex+y-3,[(2x-y+2)+1]≤e2x-y+2,得到$\left\{\begin{array}{l}{x+y-2{≤e}^{x+y-3}}\\{2x-y+3{=e}^{2x-y+2}}\end{array}\right.$,求出x,y的值即可.

解答 解:令f(x)=ex-(x+1),
则f′(x)=ex-1,
令f′(x)>0,解得:x>0,
令f′(x)<0,解得:x<0,
故f(x)的最小值是f(0)=0,
故ex≥x+1,
∵3x+1≥ex+y-3+e2x-y+2
∴[(x+y-3)+2]+[(2x-y+2)+1]
≥ex+y-3+e2x-y+2
即[(x+y-3)+1]≤ex+y-3,[(2x-y+2)+1]≤e2x-y+2
∴$\left\{\begin{array}{l}{x+y-2{≤e}^{x+y-3}}\\{2x-y+3{=e}^{2x-y+2}}\end{array}\right.$,
∴$\left\{\begin{array}{l}{x+y-3=0}\\{2x-y+2=0}\end{array}\right.$,
∴$\left\{\begin{array}{l}{x=\frac{1}{3}}\\{y=\frac{8}{3}}\end{array}\right.$,
∴x+y=3,
故答案为:3.

点评 本题考查了不等式的性质,考查转化思想,是一道综合题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网