题目内容
设数列{an}为等比数列,a1=C2m+33mAm-21,公比q是(x+
)4的展开式中的第二项(按x的降幂排列).
(1)确定m的值
(2)用n,x表示通项an与前n项和Sn;
(3)记 An=Cn1S1+Cn2S2+…+CnnSn
①证明,当x=1时,An=n×2n-1
②当x≠1时,用n,x表示An.
| 1 |
| 4x2 |
(1)确定m的值
(2)用n,x表示通项an与前n项和Sn;
(3)记 An=Cn1S1+Cn2S2+…+CnnSn
①证明,当x=1时,An=n×2n-1
②当x≠1时,用n,x表示An.
(1)由a1=
•
得
?
,
∴m=3,
(2)a1=
•
=1.
又(x+
)4 展开式中第2项T2=
•x3•(
)=x,即公比为x,
∴an=xn-1,
∴Sn=
;
(2)由Sn表达式引发讨论:
(Ⅰ)当x=1时,Sn=n,此时An=
+2
+3
+…+n
,①
又An=n
+(n-1)
+…+1•
②
∴①+②得2An=n(
+
+…+
)=n•2n,
∴An=n•2n-1.
(Ⅱ)当x≠1时,Sn=
,此时An=
+
+…+
=
[(
+
+…+
)-(x
+x2
+x3
+…+xn
)]
=
{(2n-1)-[(1+x)n-1]}
=
[2n-(1+x)n].
| C | 3m2m+3 |
| A | 1m-2 |
|
|
∴m=3,
(2)a1=
| C | 99 |
| A | 11 |
又(x+
| 1 |
| 4x2 |
| C | 14 |
| 1 |
| 4x2 |
∴an=xn-1,
∴Sn=
|
(2)由Sn表达式引发讨论:
(Ⅰ)当x=1时,Sn=n,此时An=
| C | 1n |
| C | 2n |
| C | 3n |
| C | nn |
又An=n
| C | 0n |
| C | 1n |
| C | n-1n |
∴①+②得2An=n(
| C | 0n |
| C | 1n |
| C | nn |
∴An=n•2n-1.
(Ⅱ)当x≠1时,Sn=
| 1-xn |
| 1-x |
| 1-x |
| 1-x |
| C | 1n |
| 1-x2 |
| 1-x |
| C | 2n |
| 1-xn |
| 1-x |
| C | nn |
=
| 1 |
| 1-x |
| C | 1n |
| C | 2n |
| C | nn |
| C | 1n |
| C | 2n |
| C | 3n |
| C | nn |
=
| 1 |
| 1-x |
=
| 1 |
| 1-x |
练习册系列答案
相关题目