题目内容
(2004•黄埔区一模)已知数列{an}中,a1=1,前n项和为Sn,对于任意n≥2,3Sn-4,an,2-
Sn-1总成等差数列.
(Ⅰ)求a2,a3,a4的值;
(Ⅱ)求通项an;
(Ⅲ)计算
Sn.
| 3 |
| 2 |
(Ⅰ)求a2,a3,a4的值;
(Ⅱ)求通项an;
(Ⅲ)计算
| lim |
| n→∞ |
分析:(Ⅰ)由题意可得2an=3Sn-
sn-1-2,再由a1=1,令n=2可以求得a2=
,同理,分别令n=3 和4,可求得
a3,a4的值.
(Ⅱ)由题意可得,3Sn=an+4,故有3Sn+1=an+1+4,相减可得3an+1=an+1-an,即
=-
,即a2,a3,…an,…成等比数列,由此求得通项an .
(Ⅲ)由题意可得,
Sn=1+
(a2+a3+…+an)=1+
,运算求得结果.
| 3 |
| 2 |
| 1 |
| 2 |
a3,a4的值.
(Ⅱ)由题意可得,3Sn=an+4,故有3Sn+1=an+1+4,相减可得3an+1=an+1-an,即
| an+1 |
| an |
| 1 |
| 2 |
(Ⅲ)由题意可得,
| lim |
| n→∞ |
| lim |
| n→∞ |
| a2 |
| 1-q |
解答:解:(Ⅰ)∵当n≥2时,3Sn-4,an,2-
sn-1总成等差数列,∴2an=3Sn-
sn-1-2.
再由a1=1,令n=2可得 2a2 =3s2-
a1-2,即 2an=3(1+a2 )-
-2,解得 a2=
.
令n=3 可得2a3=3S3-
S2-2,即 2a3=3(1+
+a3)-
(1+
)-2,解得 a3=-
.
同理,令n=4,可求得 a4=
?.
(Ⅱ)∵当n≥2时,3Sn-4,an,2-
sn-1总成等差数列,即 2an=3Sn-4+2-
sn-1,?
即 2an+2=3sn-
sn-1,∴2an+1+2=3sn+1-
sn.
两式相减,得2an+1 -2an=3an+1-
an,即
=-
,
∴a2,a3,…an,…成等比数列,故an=
.
(Ⅲ)由于数列{an}当n≥2时构成等比数列,公比q=-
,
故
Sn=
a1+
(a2+a3+…+an)=1+
=1+
=
.
| 3 |
| 2 |
| 3 |
| 2 |
再由a1=1,令n=2可得 2a2 =3s2-
| 3 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
令n=3 可得2a3=3S3-
| 3 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
同理,令n=4,可求得 a4=
| 1 |
| 8 |
(Ⅱ)∵当n≥2时,3Sn-4,an,2-
| 3 |
| 2 |
| 3 |
| 2 |
即 2an+2=3sn-
| 3 |
| 2 |
| 3 |
| 2 |
两式相减,得2an+1 -2an=3an+1-
| 3 |
| 2 |
| an+1 |
| an |
| 1 |
| 2 |
∴a2,a3,…an,…成等比数列,故an=
|
(Ⅲ)由于数列{an}当n≥2时构成等比数列,公比q=-
| 1 |
| 2 |
故
| lim |
| n→∞ |
| lim |
| n→∞ |
| lim |
| n→∞ |
| a2 |
| 1-q |
| ||
1-( -
|
| 4 |
| 3 |
点评:本题主要考查等差数列的定义和性质,等比数列的通项公式,无穷递缩等比数列前n项和的极限,属于中档题.
练习册系列答案
相关题目