题目内容
已知二次函数f(x)=x2-ax+4,若f(x+1)是偶函数,则实数a的值为( )
| A.-1 | B.1 | C.-2 | D.2 |
∵f(x)=x2-ax+4,
∴f(x+1)=(x+1)2-a(x+1)+4
=x2+2x+1-ax-a+4
=x2+(2-a)x+5-a,
f(1-x)=(1-x)2-a(1-x)+4
=x2-2x+1-a+ax+4
=x2+(a-2)x+5-a.
∵f(x+1)是偶函数,
∴f(x+1)=f(-x+1),
∴a-2=2-a,即a=2.
故选D
∴f(x+1)=(x+1)2-a(x+1)+4
=x2+2x+1-ax-a+4
=x2+(2-a)x+5-a,
f(1-x)=(1-x)2-a(1-x)+4
=x2-2x+1-a+ax+4
=x2+(a-2)x+5-a.
∵f(x+1)是偶函数,
∴f(x+1)=f(-x+1),
∴a-2=2-a,即a=2.
故选D
练习册系列答案
相关题目