题目内容
已知数列{an}满足a1=2 ,an+1=3an+3n+1-2n (n∈N*).
(1)设bn=
,证明:数列{bn}为等差数列,并求数列{an}的通项公式;
(2)求数列{an}的前n项和Sn.
(1)设bn=
| an-2n |
| 3n |
(2)求数列{an}的前n项和Sn.
(1)证明:∵bn+1-bn=
-
=
-
=1,…(2分)
∴{bn}为等差数列.
又b1=0,∴bn=n-1.…(4分)
∴an=(n-1)•3n+2n.…(6分)
(2)设Tn=0•31+1•32+…+(n-1)•3n,则
3Tn=0•32+1•33+…+(n-1)•3n+1.
∴两式相减可得-2Tn=32+…+3n-(n-1)•3n+1=
-(n-1)•3n+1.…(10分)
∴Tn=
+
=
.
∴Sn=Tn+(2+22+…+2n)=
. …(14分)
| an+1-2n+1 |
| 3n+1 |
| an-2n |
| 3n |
| 3an+3n+1-2n-2n+1 |
| 3n+1 |
| an-2n |
| 3n |
∴{bn}为等差数列.
又b1=0,∴bn=n-1.…(4分)
∴an=(n-1)•3n+2n.…(6分)
(2)设Tn=0•31+1•32+…+(n-1)•3n,则
3Tn=0•32+1•33+…+(n-1)•3n+1.
∴两式相减可得-2Tn=32+…+3n-(n-1)•3n+1=
| 9(1-3n-1) |
| 1-3 |
∴Tn=
| 9-3n+1 |
| 4 |
| (n-1)•3n+1 |
| 2 |
| (2n-3)•3n+1+9 |
| 4 |
∴Sn=Tn+(2+22+…+2n)=
| (2n-3)3n+1+2n+3+1 |
| 4 |
练习册系列答案
相关题目