题目内容

f(x)的定义域为R,若存在常数M>0,使|f(x)|≤M|x|对一切实数x均成立,则称f(x)为F函数.现给出下列函数:
①f(x)=2x;
②f(x)=x2+1;
f(x)=
2
(sinx+cosx)

f(x)=
x
x2-x+1

⑤f(x)是定义在实数集R上的奇函数,且对一切x1,x2均有|f(x1)-f(x2)|≤2|x1-x2|.
其中是F函数的函数有
①④⑤
①④⑤
分析:用F函数的定义加以验证,对于①④⑤均可以找到常数M>0,使|f(x)|≤M|x|对一切实数x均成立,说明它们是F函数.而对于②③,当x→0时,|
f(x)
x
|→∞,所以不存在常数M>0,使|f(x)|≤M|x|对一切实数x均成立,故它们不符合题意.
解答:解:对于①,f(x)=2x,易知存在M=2>0,使|f(x)|≤M|x|对一切实数x均成立,符合题意;
对于④,因为|f(x)|=
|x|
x2-x+1
=
|x|
(x-
1
2
)
2
+
3
4
4
3
|x|,所以存在常数M=
4
3
>0,使|f(x)|≤M|x|对一切实数x均成立,④是F函数;
对于⑤,f(x)是定义在实数集R上的奇函数,故|f(x)|是偶函数,因而由|f(x1)-f(x2)|≤2|x1-x2|得到,
|f(x)|≤2|x|成立,存在M≥2>0,使|f(x)|≤M|x|对一切实数x均成立,符合题意.
而对②、③用F函数的定义不难发现:因为x→0时,|
f(x)
x
|→∞,所以不存在常数M>0,使|f(x)|≤M|x|对一切实数x均成立,它们是不符合题意的
故答案为:①④⑤
点评:本题考查了函数的定义域和值域的问题,属于中档题.题中“F函数”的实质是函数f(x)与x的比值对应的函数是有界的,抓住这一点我们不难解出.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网