题目内容
错位相减法求和:求和:Sn=1+3x+5x2+7x3+…+(2n-1)xn-1.
由题可知,{(2n-1)xn-1}的通项是等差数列{2n-1}的通项与等比数列{xn-1}的通项之积.
∵Sn=1+3x+5x2+7x3+…+(2n-1)xn-1,
∴xSn=x+3x2+…+(2n-3)xn-1+(2n-1)xn,
两式相减得(1-x)Sn=1+2x+2x2+…+2xn-1-(2n-1)xn,
①当x≠1,0时,由等比数列的求和公式得:(1-x)Sn=1+
-(2n-1)xn,
∴Sn=
;
②当x=1时,Sn=1+3+5+…+(2n-1)=
=n2.
③当x=0时,Sn=1+0=1.
∵Sn=1+3x+5x2+7x3+…+(2n-1)xn-1,
∴xSn=x+3x2+…+(2n-3)xn-1+(2n-1)xn,
两式相减得(1-x)Sn=1+2x+2x2+…+2xn-1-(2n-1)xn,
①当x≠1,0时,由等比数列的求和公式得:(1-x)Sn=1+
| 2x(1-xn-1) |
| 1-x |
∴Sn=
| (2n-1)xn+1-(2n+1)xn+(1+x) |
| (1-x)2 |
②当x=1时,Sn=1+3+5+…+(2n-1)=
| n(1+2n-1) |
| 2 |
③当x=0时,Sn=1+0=1.
练习册系列答案
相关题目