题目内容
(本小题满分12分)口袋里有分别标有数字1、2、3、4的4只白球和分别标有数字5、6的2只红球,这些球除了颜色和所标数字外完全相同.某人从中随机取出一球,记下球上所标数字后放回,再随机取出一球并记下球上所标数字,
(Ⅰ)求两次取出的球上的数字之和大于8的概率;
(Ⅱ)求两次取出的球颜色不同的概率;
【答案】
解:由题,从口袋里任意取一球,放回后再随机取出一球,共有36个基本事件,
且它们等可能发生 …. …. 2分
(Ⅰ) 设:“两次取出的球上的数字之和大于8”为事件A
则事件A中包含两次取出的球上的号码为(3,6),(4,5,),(4,6),(5,4),(5,5,),(5,6),(6,3),(6,4),
(6,5),(6,6)共10个基本事件,
…. …. ….6分
(Ⅱ) 设:“两次取出的球颜色不同”为事件B,则事件B包含两次取出的球上的号码为(1,5,),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(6,1),(6,2),(6,3),(64)共16个基本事件,
….
…. ….10分
答:次取出的球上的数字之和大于8的概率是
两次取出的球颜色不同的概率是![]()
…. …. ….12分
【解析】略
练习册系列答案
相关题目