题目内容
椭圆
+
=1(a>b>0)与圆x2+y2=(
+c)2(c为椭圆半焦距)有四个不同交点,则离心率的取值范围是( )
| x2 |
| a2 |
| y2 |
| b2 |
| b |
| 2 |
分析:联立椭圆
+
=1(a>b>0)与圆x2+y2=(
+c)2,消去y2,可得
x2= (
+c)2-b2,根据椭圆
+
=1(a>b>0)与圆x2+y2=(
+c)2(c为椭圆半焦距)有四个不同交点,可知方程有两个不等的根,结合椭圆的范围,即可求得离心率的取值范围.
| x2 |
| a2 |
| y2 |
| b2 |
| b |
| 2 |
| c2 |
| a2 |
| b |
| 2 |
| x2 |
| a2 |
| y2 |
| b2 |
| b |
| 2 |
解答:解:联立椭圆
+
=1(a>b>0)与圆x2+y2=(
+c)2,消去y2,可得
x2= (
+c)2-b2
∵椭圆
+
=1(a>b>0)与圆x2+y2=(
+c)2(c为椭圆半焦距)有四个不同交点,
∴0<x2<a2
∴0<
x2< c2
∴0<(
+c)2-b2<c2
∴
c<b<2c
∴
c2<b2<4c2
∴
c2<a2-c2<4c2
∴
c2<a2 <5c2
∴
<e<
故选A.
| x2 |
| a2 |
| y2 |
| b2 |
| b |
| 2 |
| c2 |
| a2 |
| b |
| 2 |
∵椭圆
| x2 |
| a2 |
| y2 |
| b2 |
| b |
| 2 |
∴0<x2<a2
∴0<
| c2 |
| a2 |
∴0<(
| b |
| 2 |
∴
| 3 |
| 4 |
∴
| 9 |
| 16 |
∴
| 9 |
| 16 |
∴
| 25 |
| 16 |
∴
| ||
| 5 |
| 3 |
| 5 |
故选A.
点评:本题考查的重点是椭圆的几何性质,解题的关键是将椭圆
+
=1(a>b>0)与圆x2+y2=(
+c)2(c为椭圆半焦距)联立,利用有四个不同交点,结合0<x2<a2,从而使问题得解,综合性强.
| x2 |
| a2 |
| y2 |
| b2 |
| b |
| 2 |
练习册系列答案
相关题目