题目内容
函数y=cos2x-3sinxsin(x+
)的最小正周期T=______.
| 3π |
| 2 |
y=cos2x-3sinxsin(x+
)
=
(1+cos2x)-3sinx(sinxcos
+cosxsin
)
=
+
cos2x+3sinxcosx
=
+
cos2x+
sin2x
=
+
(
cos2x+
sin2x)
=
+
sin(2x+θ)(其中sinθ=
,cosθ=
),
∵ω=2,
∴T=
=π.
故答案为:π
| 3π |
| 2 |
=
| 1 |
| 2 |
| 3π |
| 2 |
| 3π |
| 2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
=
| 1 |
| 2 |
| ||
| 2 |
| ||
| 10 |
3
| ||
| 10 |
=
| 1 |
| 2 |
| ||
| 2 |
| ||
| 10 |
3
| ||
| 10 |
∵ω=2,
∴T=
| 2π |
| 2 |
故答案为:π
练习册系列答案
相关题目
为了得到函数y=sin(2x-
)的图象,可以将函数y=cos2x的图象( )
| π |
| 6 |
A、向右平移
| ||
B、向右平移
| ||
C、向左平移
| ||
D、向左平移
|