题目内容
13、已知函数f(x)是奇函数,当x≤0,时,f(x)=x2-2x,那么当x>0时,f(x)的解析式是
f(x)=-x2-2x
.分析:由题意设x>0利用已知的解析式求出f(-x)=x2+2x,再由f(x)=-f(-x),求出x>0时的解析式.
解答:解:由题意可得:设x>0,则-x<0;
∵当x≤0时,f(x)=x2-2x,
∴f(-x)=x2+2x,
因为函数f(x)是奇函数,
所以f(-x)=-f(x),
所以x>0时f(x)=-x2-2x,
故答案为f(x)=-x2-2x.
∵当x≤0时,f(x)=x2-2x,
∴f(-x)=x2+2x,
因为函数f(x)是奇函数,
所以f(-x)=-f(x),
所以x>0时f(x)=-x2-2x,
故答案为f(x)=-x2-2x.
点评:本题的考点是利用函数的奇偶性求函数的解析式(即利用f(x)和f(-x)的关系),把x的范围转化到已知的范围内求对应的解析式,注意两点:f(0)的情况,要用分段函数表示.
练习册系列答案
相关题目