题目内容
已知等差数列{an}的前n项和为An,且满足a1+a5=6,A9=63;数列{bn}的前n项和为Bn,且满足Bn=2bn-1(n∈N*).
(I)求数列{an},{bn}的通项公式ab,bn;
(II)设cn=an•bn求数列{cn}的前n项和Sn.
(I)求数列{an},{bn}的通项公式ab,bn;
(II)设cn=an•bn求数列{cn}的前n项和Sn.
(I)设 {an}的首项为a1,公差为d,因为 a1+a5=6,得a1+2d=3.由A9=63,得a1+4d=7,两式联立解得a1=-1,d=2.
所以an=-1+2(n-1)=2n-3,n∈N•.
当n=1时,b1=2b1-1,解得b1=1.当 n≥2时,bn=Bn-Bn-1=2bn-2bn-1,即bn=2bn-1.
所以数列{bn}是首项是1,公比为2的等比数列.所以bn=2n-1,n∈N•.
(II)因为cn=an•bn,所以cn=an?bn=(2n-3)?2n.
则Sn=-2+1?22+3?23+…+(2n-3)?2n ①
2Sn=-22+1?23+3?24+…+(2n-3)?2n+1 ②
①-②得,-Sn=-2+2?22+2?23+…+2?2n-(2n-3)?2n+1=
-2-(2n-3)?2n+1=
-2-(2n-3)?2n+1=2n+1-8-2-(2n-3)?2n+1=(4-2n)?2n+1-10,
所以Sn=10-(4-2n)?2n+1,即数列{cn}的前n项和为Sn=10-(4-2n)?2n+1.
所以an=-1+2(n-1)=2n-3,n∈N•.
当n=1时,b1=2b1-1,解得b1=1.当 n≥2时,bn=Bn-Bn-1=2bn-2bn-1,即bn=2bn-1.
所以数列{bn}是首项是1,公比为2的等比数列.所以bn=2n-1,n∈N•.
(II)因为cn=an•bn,所以cn=an?bn=(2n-3)?2n.
则Sn=-2+1?22+3?23+…+(2n-3)?2n ①
2Sn=-22+1?23+3?24+…+(2n-3)?2n+1 ②
①-②得,-Sn=-2+2?22+2?23+…+2?2n-(2n-3)?2n+1=
| 2?22(1-2n-1) |
| 1-2 |
| 2?22(1-2n-1) |
| 1-2 |
所以Sn=10-(4-2n)?2n+1,即数列{cn}的前n项和为Sn=10-(4-2n)?2n+1.
练习册系列答案
相关题目