题目内容
已知数列{an}是公差为2的等差数列,且a1+1,a3+1,a7+1成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令bn=
(n∈N*),记数列{bn}的前n项和为Tn,求证:Tn<
.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令bn=
| 1 | ||
|
| 1 |
| 4 |
(I)设等差数列{an}的首项为a1,因为a1+1,a3+1,a7+1成等比数列,所以有
(a3+1)2=(a1+1)(a7+1),即(a1+5)2=(a1+1)(a1+13),
解得:a1=3,所以an=3+2(n-1)=2n+1;
(II)证明:由(I)知:an=2n+1,所以
bn=
=
=
•
=
(
-
),
所以Tn=
(1-
+
-
+…+
-
)=
(1-
)=
-
<
.
(a3+1)2=(a1+1)(a7+1),即(a1+5)2=(a1+1)(a1+13),
解得:a1=3,所以an=3+2(n-1)=2n+1;
(II)证明:由(I)知:an=2n+1,所以
bn=
| 1 |
| an2-1 |
| 1 |
| (2n+1)2-1 |
| 1 |
| 4 |
| 1 |
| n(n+1) |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
所以Tn=
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| 4 |
| 1 |
| n+1 |
| 1 |
| 4 |
| 1 |
| 4(n+1) |
| 1 |
| 4 |
练习册系列答案
相关题目