题目内容
四棱柱ABCD-A′B′C′D′中,AB=5,AD=3,AA′=7,∠BAD=60°,∠BAA′=∠DAA′=45°,求AC′的长.
分析:由
=
+
+
=
+
+
,利用平方法,可求出|
|,即AC′的长
| AC′ |
| AB |
| BC |
| CC′ |
| AB |
| AD |
| AA′ |
| AC′ |
解答:解:∵
=
+
+
=
+
+
∴(
)2=(
+
+
)2
=
2+
2+
2+2(
•
+
•
+
•
)
=25+9+49+2(5×3×cos60°+5×7×cos45°+3×7×cos45°)
=98+56
∴|
|=
即AC′的长为
| AC′ |
| AB |
| BC |
| CC′ |
| AB |
| AD |
| AA′ |
∴(
| AC′ |
| AB |
| AD |
| AA′ |
=
| AB |
| AD |
| AA′ |
| AB |
| AD |
| AA′ |
| AB |
| AD |
| AA′ |
=25+9+49+2(5×3×cos60°+5×7×cos45°+3×7×cos45°)
=98+56
| 2 |
∴|
| AC′ |
98+56
|
即AC′的长为
98+56
|
点评:本题以四棱柱为载体,考查向量模的求法,熟练掌握平方法求向量模的步骤是解答的关键.
练习册系列答案
相关题目