题目内容
(2007•静安区一模)(文)已知等差数列{an}的首项a1=0且公差d≠0,bn=2^an(n∈N*),Sn是数列{bn}的前n项和.
(1)求Sn;
(2)设Tn=
(n∈N*),当d>0时,求
Tn.
(1)求Sn;
(2)设Tn=
| Sn |
| bn |
| lim |
| n→+∞ |
分析:(1)由an=(n-1)d,bn=2(n-1)d可得Sn=b1+b2+b3+…+bn=20+2d+22d+…+2(n-1)d?由d≠0得2d≠1,,利用等比数列的求和公式可求
(2)Tn=
=
=
,从而可得,由d>0时,2d>1 可求
Tn=
(2)Tn=
| Sn |
| bn |
| ||
| 2(n-1)d |
| 1-2nd |
| 2(n-1)d-2nd |
| lim |
| n→∞ |
| lim |
| n→∞ |
| 1-2nd |
| 2dn-d-2dn |
解答:解:(文)(1)an=(n-1)d,bn=2^an=2(n-1)d??(4分)
Sn=b1+b2+b3+…+bn=20+2d+22d+…+2(n-1)d?
由d≠0得2d≠1,∴Sn=
. (8分)
(2)Tn=
=
=
,(10分)
∴
Tn=
=
=
=
Sn=b1+b2+b3+…+bn=20+2d+22d+…+2(n-1)d?
由d≠0得2d≠1,∴Sn=
| 1-(2d)n |
| 1-2d |
(2)Tn=
| Sn |
| bn |
| ||
| 2(n-1)d |
| 1-2nd |
| 2(n-1)d-2nd |
∴
| lim |
| n→∞ |
| lim |
| n→∞ |
| 1- 2nd |
| 2nd-d-2nd |
| lim |
| n→∞ |
| 1-(2d)n |
| (2d)n-1-(2d)n |
=
| lim |
| n→∞ |
| ||
|
| 2d |
| 2d-1 |
点评:本题主要考查了数列极限的求解,解题的关键是利用等比数列的求和公式求出Sn,属于数列知识的综合应用.
练习册系列答案
相关题目