题目内容
给定一个n项的实数列(Ⅰ)对数列:1,2,4,8,分别写出经变换T1(2),T2(3),T3(4)后得到的数列;
(Ⅱ)对数列:1,3,5,7,给出一个“k次归零变换”,其中k≤4;
(Ⅲ)证明:对任意n项数列,都存在“n次归零变换”.
【答案】分析:(Ⅰ)根据新定义,可计算经变换T1(2),T2(3),T3(4)后得到的数列;
(Ⅱ)根据新定义,计算经变换T1(4);T2(2);T3(1),或T1(2);T2(2);T3(2);T4(1),可得结论;
(Ⅲ)记经过Tk(ck)变换后,数列为
.取
,
,继续做类似的变换,取
,(k≤n-1),经Tk(ck)后,得到数列的前k+1项相等,再取
,经Tn(cn)后,即可得到结论.
解答:(Ⅰ)解:T1(2):1,0,2,6;T2(3):2,3,1,3;T3(4):2,1,3,1.…(3分)
(Ⅱ)解:方法1:T1(4):3,1,1,3;T2(2):1,1,1,1;T3(1):0,0,0,0.
方法2:T1(2):1,1,3,5;T2(2):1,1,1,3;T3(2):1,1,1,1;T4(1):0,0,0,0.
…(6分)
(Ⅲ)证明:记经过Tk(ck)变换后,数列为
.
取
,则
,即经T1(c1)后,前两项相等;
取
,则
,即经T2(c2)后,前3项相等;
继续做类似的变换,取
,(k≤n-1),经Tk(ck)后,得到数列的前k+1项相等.特别地,当k=n-1时,各项都相等,最后,取
,经Tn(cn)后,数列各项均为0.所以必存在n次“归零变换”. …(13分)
点评:本题考查新定义,考查学生分析解决问题的能力,考查学生的探究能力,难度较大.
(Ⅱ)根据新定义,计算经变换T1(4);T2(2);T3(1),或T1(2);T2(2);T3(2);T4(1),可得结论;
(Ⅲ)记经过Tk(ck)变换后,数列为
解答:(Ⅰ)解:T1(2):1,0,2,6;T2(3):2,3,1,3;T3(4):2,1,3,1.…(3分)
(Ⅱ)解:方法1:T1(4):3,1,1,3;T2(2):1,1,1,1;T3(1):0,0,0,0.
方法2:T1(2):1,1,3,5;T2(2):1,1,1,3;T3(2):1,1,1,1;T4(1):0,0,0,0.
…(6分)
(Ⅲ)证明:记经过Tk(ck)变换后,数列为
取
取
继续做类似的变换,取
点评:本题考查新定义,考查学生分析解决问题的能力,考查学生的探究能力,难度较大.
练习册系列答案
相关题目