题目内容
在等差数列{an}中,公差d≠0,a2,a4,a7,成等比数列,则
=
.
| a1+a4 |
| a2 |
| 9 |
| 4 |
| 9 |
| 4 |
分析:设公差为d,由已知列出关于d的方程,解出后,按照等差数列通项公式可得答案.
解答:解:∵a2,a4,a7成等比数列,
∴a2•a7=a42,即(a1+d)(a1+6d)=(a1+3d)2,
解得a1=3d,或d=0(舍去),
由等差数列通项公式得an=a1+(n-1)d=3d+(n-1)d=(n+2)d
故
=
=
.
故答案为:
∴a2•a7=a42,即(a1+d)(a1+6d)=(a1+3d)2,
解得a1=3d,或d=0(舍去),
由等差数列通项公式得an=a1+(n-1)d=3d+(n-1)d=(n+2)d
故
| a1+a4 |
| a2 |
| 3d+6d |
| 4d |
| 9 |
| 4 |
故答案为:
| 9 |
| 4 |
点评:本题考查等比数列定义,等差数列通项公式,属基础题.
练习册系列答案
相关题目