题目内容

已知α,β是三次函数的两个极值点,且α∈(0,1),β∈(1,2),求动点(a,b)所在区域面积S.
【答案】分析:已知α,β是三次函数的两个极值点,对f(x)进行求导,可知α,β是方程x2+ax+2b=0的两个根,根据α∈(0,1),β∈(1,2),求出可行域,利用数形结合的方法进行求解;
解答:解:由函数可得,
f'(x)=x2+ax+2b,…(2分)
由题意知,α,β是方程x2+ax+2b=0的两个根,…(5分)
且α∈(0,1),β∈(1,2),
因此得到可行域…(9分)
,画出可行域如图.…(11分)
所以=…(12分);
点评:此题是一道简单的线性规划问题,利用导数研究函数的单调性,根据二次函数根与系数的关系得出可行域,此题是一道基础题;
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网