题目内容

△ABC中若有sinC=
sinA+sinB
cosA+cosB
,则△ABC的形状一定是(  )
分析:利用积化和差将等式变形,转化方向是变成简单的三角方程求角的值,通过角的值来确定△ABC的形状.
解答:证明:∵在△ABC中,sinC=
sinA+sinB
cosA+cosB

∴sin(A+B)=
2sin
A+B
2
×cos
A-B
2
2cos
A+B
2
cos
A-B
2

∴2sin
A+B
2
cos
A+B
2
=
sin
A+B
2
cos
A+B
2

∴2cos2
A+B
2
-1=0
∴cos(A+B)=0
∴A+B=
π
2
,即C=
π
2

∴△ABC是直角三角形.
故选B.
点评:考查利用三角恒等变换的公式进行灵活变形的能力,用来训练答题者掌握相关公式的熟练程度及选择变形方向的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网