题目内容
已知a1=1,an=n(an+1-an),则数列{an}的通项公式an=( )
| A、2n-1 | ||
B、(
| ||
| C、n2 | ||
| D、n |
分析:先整理an=n(an+1-an)得
=
,进而用叠乘法求得答案.
| an+1 |
| an |
| n+1 |
| n |
解答:解:整理an=n(an+1-an)得
=
∴
•
…
=
×
…×
=
=n
∴an=na1=n
故选D
| an+1 |
| an |
| n+1 |
| n |
∴
| a2 |
| a1 |
| a3 |
| a2 |
| an |
| an-1 |
| 2 |
| 1 |
| 3 |
| 2 |
| n |
| n-1 |
| an |
| a1 |
∴an=na1=n
故选D
点评:本题主要考查了数列的递推式.解题的关键是从递推式中找到规律,进而求得数列的通项公式.
练习册系列答案
相关题目