题目内容

数列{an}中,a1=2,a2=3,且{anan+1}是以3为公比的等比数列,记bn=a2n-1+a2n (n∈N*).

(1)求a3,a4,a5,a6的值;

(2)求证:{bn}是等比数列.

(1)a3=6,a4=9,a5=18,a6=27.(2)证明见解析


解析:

(1)解  ∵{anan+1}是公比为3的等比数列,

∴anan+1=a1a2·3n-1=2·3n

∴a3==6,a4==9,

a5==18,a6==27.

(2)证明  ∵{anan+1}是公比为3的等比数列,

∴anan+1=3an-1an,即an+1=3an-1

∴a1,a3,a5,…,a2n-1,…与a2,a4,a6,…,a2n,…都是公比为3的等比数列.

∴a2n-1=2·3n-1,a2n=3·3n-1

∴bn=a2n-1+a2n=5·3n-1.

==3,故{bn}是以5为首项,3为公比的等比数列.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网