搜索
题目内容
设A={x|x+2≥0},B={x∈N*|2x﹣3≤0},则A∩B=
[ ]
A.
B.{1}
C.{﹣2,﹣1,0,1}
D.
试题答案
相关练习册答案
B
练习册系列答案
1加1阅读好卷系列答案
专项复习训练系列答案
初中语文教与学阅读系列答案
阅读快车系列答案
完形填空与阅读理解周秘计划系列答案
英语阅读理解150篇系列答案
奔腾英语系列答案
标准阅读系列答案
53English系列答案
考纲强化阅读系列答案
相关题目
15、(1)设A={x|x=2k-1,k∈Z},B={x|x=2k,k∈Z},求C
Z
A及C
Z
(A∪B)
(2)已知A={x|a-4≤x<a+3},B={x|x<2或x>5},且A∩B=A,求a的取值范围.
3、设A={x|x=2
α
•3
β
,α,β∈Z且α≥0,β≥0},B={x|1≤x≤5},则实数A∩B=
{1,2,3,4}
.
设
h(x)=x+
m
x
,
x∈[
1
4
,5]
,其中m是不等于零的常数,
(1)(理)写出h(4x)的定义域;
(文)m=1时,直接写出h(x)的值域;
(2)(文、理)求h(x)的单调递增区间;
(3)已知函数f(x)(x∈[a,b]),定义:f
1
(x)=minf(t)|a≤t≤x(x∈[a,b]),f
2
(x)=maxf(t)|a≤t≤x(x∈[a,b]).其中,minf(x)|x∈D表示函数f(x)在D上的最小值,maxf(x)|x∈D表示函数f(x)在D上的最大值.例如:f(x)=cosx,x∈[0,π],则f
1
(x)=cosx,x∈[0,π],f
2
(x)=1,x∈[0,π].
(理)当m=1时,设
M(x)=
h(x)+h(4x)
2
+
|h(x)-h(4x)|
2
,不等式t≤M
1
(x)-M
2
(x)≤n恒成立,求t,n的取值范围;
(文)当m=1时,|h
1
(x)-h
2
(x)|≤n恒成立,求n的取值范围.
设A={x|x
2
-2x+a=0},4∈A,
(1)求a的值,并写出集合A的所有子集;
(2)已知B={x|mx+2=0},若A∪B=A,求m的值.
设A={x|x+2≥0},B={x∈N
*
|2x-3≤0},则A∩B=( )
A.
{x|-2≤x≤
3
2
}
B.{1}
C.{-2,-1,0,1}
D.
{x|0≤x≤
3
2
}
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案