题目内容
(2012•泸州模拟)已知函数f(x)=sin(ωx+
)+cos(ωx-
)(ω>0,x∈R),且该函数图象相邻两对称轴间的距离为
.
(I)求函数f(x)的解析式;
(II)若不等式f(m)-
≥0成立,求实数m的取值范围.
| π |
| 6 |
| π |
| 6 |
| π |
| 2 |
(I)求函数f(x)的解析式;
(II)若不等式f(m)-
| ||||
| 4 |
分析:(I)化简函数f(x)的解析式为
sin(ωx+
),由该函数图象相邻两对称轴间的距离为
,可得函数f(x)的最小正周期为π,由此求得ω=2.
(II)由不等式可得sin(2x+
)≥
,故有 2kπ-
≤2m+
)≤2kπ+
,k∈z.由此解得实数m的取值范围.
| ||||
| 2 |
| π |
| 4 |
| π |
| 2 |
(II)由不等式可得sin(2x+
| π |
| 4 |
| 1 |
| 2 |
| π |
| 6 |
| π |
| 4 |
| 5π |
| 6 |
解答:解:(I)∵函数 f(x)=sin(ωx+
)+cos(ωx-
)=
sinωx+
cosωx+
cosωx+
sinωx
=
(sinωx+cosωx)=
sin(ωx+
).
∵该函数图象相邻两对称轴间的距离为
,∴函数f(x)的最小正周期为π,
即
=π,ω=2,f(x)=
sin(2x+
).
(II)∵不等式f(m)-
≥0成立,∴
sin(2m+
)≥
,
∵sin(2x+
)≥
.
∴2kπ-
≤2m+
)≤2kπ+
,k∈z.解得 kπ-
≤m≤kπ+
,k∈z.
故实数m的取值范围为[kπ-
,kπ+
]k∈z.
| π |
| 6 |
| π |
| 6 |
| ||
| 2 |
| 1 |
| 2 |
| ||
| 2 |
| 1 |
| 2 |
=
| ||
| 2 |
| ||||
| 2 |
| π |
| 4 |
∵该函数图象相邻两对称轴间的距离为
| π |
| 2 |
即
| 2π |
| ω |
| ||||
| 2 |
| π |
| 4 |
(II)∵不等式f(m)-
| ||||
| 4 |
| ||||
| 2 |
| π |
| 4 |
| ||||
| 4 |
∵sin(2x+
| π |
| 4 |
| 1 |
| 2 |
∴2kπ-
| π |
| 6 |
| π |
| 4 |
| 5π |
| 6 |
| π |
| 24 |
| 7π |
| 24 |
故实数m的取值范围为[kπ-
| π |
| 24 |
| 7π |
| 24 |
点评:本题主要考查三角函数的恒等变换及化简求值,复合函数的单调性,解三角不等式,属于中档题.
练习册系列答案
相关题目