ÌâÄ¿ÄÚÈÝ
ÏÂÁÐËĸöÃüÌ⣻
¢ÙÖ±Ïßx•cos¦È-y+1=0£¨¦È¡ÊR£©µÄÇãб½ÇµÄȡֵ·¶Î§Îª[
£¬
]£»
¢ÚÖ±Ïßl1£ºa1x+b1y+c1=0£¨a12+b12¡Ù0£©ÓëÖ±Ïßl2£ºa2x+b2y+c2=0£¨a22+b22¡Ù0£©£¬Ôò|
|=0ÊÇÖ±Ïßl1¡¢l2ƽÐеıØÒª²»³ä·ÖÌõ¼þ£»
¢ÛÔ²C£ºx2+y2=r2¼°µãP£¨x0£¬y0£©£¬Èô¹ýµãP×÷Ô²CµÄÁ½ÌõÇÐÏß·Ö±ð½»Ô²CÓÚA¡¢BÁ½µã£¬Ôò¹ýABµÄÖ±Ïß·½³ÌΪxx0+yy0=r2£»
¢Ü·½³Ì
+
=1²»¿ÉÄܱíʾԲ£»
ÆäÖÐÕýÈ·ÃüÌâµÄÐòºÅΪ
¢ÙÖ±Ïßx•cos¦È-y+1=0£¨¦È¡ÊR£©µÄÇãб½ÇµÄȡֵ·¶Î§Îª[
| ¦Ð |
| 4 |
| 3¦Ð |
| 4 |
¢ÚÖ±Ïßl1£ºa1x+b1y+c1=0£¨a12+b12¡Ù0£©ÓëÖ±Ïßl2£ºa2x+b2y+c2=0£¨a22+b22¡Ù0£©£¬Ôò|
|
¢ÛÔ²C£ºx2+y2=r2¼°µãP£¨x0£¬y0£©£¬Èô¹ýµãP×÷Ô²CµÄÁ½ÌõÇÐÏß·Ö±ð½»Ô²CÓÚA¡¢BÁ½µã£¬Ôò¹ýABµÄÖ±Ïß·½³ÌΪxx0+yy0=r2£»
¢Ü·½³Ì
| x2 |
| t-1 |
| y2 |
| 1-t |
ÆäÖÐÕýÈ·ÃüÌâµÄÐòºÅΪ
¢Ú¢Û¢Ü
¢Ú¢Û¢Ü
£®·ÖÎö£º¢ÙÀûÓÃÖ±ÏßµÄбÂʺÍÇãб½ÇµÄ¹ØÏµÅж¨£®¢ÚÀûÓÃÐÐÁÐʽµÄÔËËãºÍÖ±Ï߯½ÐеĵȼÛÌõ¼þ½øÐÐÅжϣ®¢ÛÀûÓÃÖ±ÏߺÍÔ²ÏàÇеĵȼÛÌõ¼þ½øÐÐÅжϣ®¢ÜÀûÓ÷½³ÌµÄÌØµãÈ·¶¨·½³Ì¶ÔÓ¦µÄ¹ì¼£·½³Ì£®
½â´ð£º½â£º¢ÙÒòΪֱÏߵıê×¼·½³ÌΪy=xcos¦È+1£¬ËùÒÔÖ±ÏßµÄбÂÊk=cos¦È£¬ËùÒÔ-1¡Ük¡Ü1£¬ÓÉ-1¡Ütan¦Á¡Ü1£¬½âµÃ0¡Ü¦Á¡Ü
»ò
¡Ü¦Á£¼¦Ð£¬ËùÒÔ¢Ù´íÎó£®
¢ÚÓÉ|
|=0µÃa1b2-a2b1=0£¬Ö±Ïßl1¡¢l2ƽÐУ¬Ôò±ØÓÐa1b2-a2b1=0£®Èôa1b2-a2b1=0ʱ£¬²»·ÁÉèc1=c2=0£¬´ËʱÁ½Ö±ÏßÖØºÏ£¬ËùÒÔ|
|=0ÊÇÖ±Ïßl1¡¢l2ƽÐеıØÒª²»³ä·ÖÌõ¼þ£¬ËùÒÔ¢ÚÕýÈ·£®
¢ÛÓÉÌâÒâ¿ÉµÃOP2=x02+y02£¬ËùÒÔÒÔOPµÄÖеãΪԲÐÄ£¬ÒÔOPΪֱ¾¶µÄÔ²µÄ·½³ÌΪ£º£¨x-
£©2+£¨y-
£©2=
OP2
¼´£º£¨x-
£©2+£¨y-
£©2=
£¨x02+y02£©¡¢Ùx2+y2=r2¡¢Ú£¬Ö±ÏßABµÄ·½³Ì¾ÍÊÇÁ½¸öÔ²µÄ¹«¹²Ïҵķ½³Ì£¬
ËùÒÔ¢Ù-¢ÚµÃx0x+y0y=r2£¬ËùÒÔ¢ÛÕýÈ·£®
¢ÜÈô·½³Ì±íʾԲ£¬ÔòÓÐ
£¬¼´
£¬²»µÈʽ×éÎ޽⣬ËùÒÔ·½³Ì²»¿ÉÄܱíʾԲ£¬ËùÒÔ¢ÜÕýÈ·£®
¹Ê´ð°¸Îª£º¢Ú¢Û¢Ü£®
| ¦Ð |
| 4 |
| 3¦Ð |
| 4 |
¢ÚÓÉ|
|
|
¢ÛÓÉÌâÒâ¿ÉµÃOP2=x02+y02£¬ËùÒÔÒÔOPµÄÖеãΪԲÐÄ£¬ÒÔOPΪֱ¾¶µÄÔ²µÄ·½³ÌΪ£º£¨x-
| x0 |
| 2 |
| y0 |
| 2 |
| 1 |
| 4 |
¼´£º£¨x-
| x0 |
| 2 |
| y0 |
| 2 |
| 1 |
| 4 |
ËùÒÔ¢Ù-¢ÚµÃx0x+y0y=r2£¬ËùÒÔ¢ÛÕýÈ·£®
¢ÜÈô·½³Ì±íʾԲ£¬ÔòÓÐ
|
|
¹Ê´ð°¸Îª£º¢Ú¢Û¢Ü£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²é¸÷ÖÖÃüÌâµÄÕæ¼ÙÅжϣ¬Éæ¼°µÄ֪ʶµã½Ï¶à£¬×ÛºÏÐÔ½ÏÇ¿£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿