题目内容
已知集合A={x|x2-8x+15=0},B={x|ax-1=0},若B⊆A,求所有满足条件的实数a组成的集合,并写出其所有子集.
解:1)当B=∅即a=0时适合条件B⊆A
∴A=0
2)当B≠∅时
∵A={3,5},B={
}
由
=3,或
=5 得
也适合条件B⊆A
综上所述所有满足条件的实数a组成的集合为{
}
{
}所有子集为∅,{0},{
},{
},{0,
},{0,
},{
,
},
{
}
分析:先通过解二次不等式化简集合A,对集合B分类讨论,利用已知条件B⊆A求出a的所有取值,然后利用子集的定义写出其所有子集.
点评:解决集合的关系问题,应该先化简各个集合;再借助数轴进行判断.
∴A=0
2)当B≠∅时
∵A={3,5},B={
由
综上所述所有满足条件的实数a组成的集合为{
{
{
分析:先通过解二次不等式化简集合A,对集合B分类讨论,利用已知条件B⊆A求出a的所有取值,然后利用子集的定义写出其所有子集.
点评:解决集合的关系问题,应该先化简各个集合;再借助数轴进行判断.
练习册系列答案
相关题目