题目内容
已知函数f(x)在R上可导,且f(x)=x2+2x•f′(2),则f(-1)与f(1)的大小关系为( )
| A.f(-1)=f(1) | B.f(-1)>f(1) | C.f(-1)<f(1) | D.不确定 |
f(x)=x2+2x•f′(2),∴f′(x)=2x+2f′(2)
∴f′(2)=4+2f′(2),∴f′(2)=-4,
∴f(x)=x2-8x,∴f′(x)=2x-8=2(x-4),
∴x<4时,f′(x)<0,f(x)为减函数,
由-1<1<4,得到f(-1)>f(1).
故选B
∴f′(2)=4+2f′(2),∴f′(2)=-4,
∴f(x)=x2-8x,∴f′(x)=2x-8=2(x-4),
∴x<4时,f′(x)<0,f(x)为减函数,
由-1<1<4,得到f(-1)>f(1).
故选B
练习册系列答案
相关题目
已知函数f(x)在R上满足y=f(x)=2f(2-x)+ex-1+x2,则曲线y=f(x)在点(1,f(1))处的切线方程是( )
| A、2x-y-1=0 | B、x-y-3=0 | C、3x-y-2=0 | D、2x+y-3=0 |