ÌâÄ¿ÄÚÈÝ
ijͬѧ»Ø´ð¡°ÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷Ö¤Ã÷£º(1)µ±n=1ʱ,ÏÔÈ»ÃüÌâÊÇÕýÈ·µÄ;(2)¼ÙÉèn=kʱÓÐ
£¼k+1,ÄÇôµ±n=k+1ʱ,
=(k+1)+1,ËùÒÔµ±n=k+1ʱÃüÌâÊÇÕýÈ·µÄ,ÓÉ(1)(2)¿ÉÖª¶ÔÓÚn¡ÊN,ÃüÌâ¶¼ÊÇÕýÈ·µÄ.ÒÔÉÏÖ¤·¨ÊÇ´íÎóµÄ,´íÎóÔÚÓÚ( )
A.µ±n=1ʱ,ÑéÖ¤¹ý³Ì²»¾ßÌå
B.¹éÄɼÙÉèµÄд·¨²»ÕýÈ·
C.´Ókµ½k+1µÄÍÆÀí²»ÑÏÃÜ
D.´Ókµ½k+1µÄÍÆÀí¹ý³ÌûÓÐʹÓùéÄɼÙÉè
½âÎö£ºµ±n=k+1ʱ,![]()
=(k+1)+1,¹ÊD´íÎó.
´ð°¸£ºD
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
¶ÔÓÚ²»µÈʽ
£¼n+1£¨n¡ÊN*£©£¬Ä³Í¬Ñ§ÓÃÊýѧ¹éÄÉ·¨µÄÖ¤Ã÷¹ý³ÌÈçÏ£º
£¨1£©µ±n=1ʱ£¬
£¼1+1£¬²»µÈʽ³ÉÁ¢£®
£¨2£©¼ÙÉèµ±n=k£¨k¡ÊN*£©Ê±£¬²»µÈʽ³ÉÁ¢£¬¼´
£¼k+1£¬Ôòµ±n=k+1ʱ£¬
=
£¼
=
=£¨k+1£©+1£¬¡àµ±n=k+1ʱ£¬²»µÈʽ³ÉÁ¢£®
ÔòÉÏÊöÖ¤·¨£¨¡¡¡¡£©
| n2+n |
£¨1£©µ±n=1ʱ£¬
| 12+1 |
£¨2£©¼ÙÉèµ±n=k£¨k¡ÊN*£©Ê±£¬²»µÈʽ³ÉÁ¢£¬¼´
| k2+k |
| (k+1)2+(k+1) |
| k2+3k+2 |
| (k2+3k+2)+(k+2) |
| (k+2)2 |
ÔòÉÏÊöÖ¤·¨£¨¡¡¡¡£©
| A¡¢¹ý³ÌÈ«²¿ÕýÈ· |
| B¡¢n=1ÑéµÃ²»ÕýÈ· |
| C¡¢¹éÄɼÙÉè²»ÕýÈ· |
| D¡¢´Ón=kµ½n=k+1µÄÍÆÀí²»ÕýÈ· |